Zobrazeno 1 - 10
of 37
pro vyhledávání: '"Kristof Van Beeck"'
Publikováno v:
Journal of Imaging, Vol 10, Iss 3, p 70 (2024)
While Siamese object tracking has witnessed significant advancements, its hard real-time behaviour on embedded devices remains inadequately addressed. In many application cases, an embedded implementation should not only have a minimal execution late
Externí odkaz:
https://doaj.org/article/7e0ad21380d649c8832bc006263d6cab
Publikováno v:
Journal of Imaging, Vol 7, Iss 4, p 64 (2021)
Object detection models are usually trained and evaluated on highly complicated, challenging academic datasets, which results in deep networks requiring lots of computations. However, a lot of operational use-cases consist of more constrained situati
Externí odkaz:
https://doaj.org/article/09a51e1df998439781a994af48bdd67f
Publikováno v:
Sensors, Vol 19, Iss 4, p 866 (2019)
In this paper, we investigate whether fusing depth information on top of normal RGB data for camera-based object detection can help to increase the performance of current state-of-the-art single-shot detection networks. Indeed, depth sensing is easil
Externí odkaz:
https://doaj.org/article/a4b74d7e3cd4448880a82793259e76b5
Using hand gestures to answer a call or to control the radio while driving a car, is nowadays an established feature in more expensive cars. High resolution time-of-flight cameras and powerful embedded processors usually form the heart of these gestu
Externí odkaz:
http://arxiv.org/abs/2004.11623
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783031250811
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::4b87e778e3d6f1edcabc18cfdabbc411
https://doi.org/10.1007/978-3-031-25082-8_18
https://doi.org/10.1007/978-3-031-25082-8_18
Publikováno v:
Image and Vision Computing ISBN: 9783031258244
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::55163da6977b70d05c3a38d727250f3d
https://doi.org/10.1007/978-3-031-25825-1_11
https://doi.org/10.1007/978-3-031-25825-1_11
Publikováno v:
Image and Vision Computing ISBN: 9783031258244
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::64f9e46be0c3299e23f67f9f4c17a556
https://doi.org/10.1007/978-3-031-25825-1_3
https://doi.org/10.1007/978-3-031-25825-1_3
Publikováno v:
Journal of Imaging
Volume 7
Issue 4
Journal of Imaging, Vol 7, Iss 64, p 64 (2021)
Volume 7
Issue 4
Journal of Imaging, Vol 7, Iss 64, p 64 (2021)
Object detection models are usually trained and evaluated on highly complicated, challenging academic datasets, which results in deep networks requiring lots of computations. However, a lot of operational use-cases consist of more constrained situati
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::47ffd53d5cf49e1ef0d98275a3f47c85
https://lirias.kuleuven.be/handle/123456789/675383
https://lirias.kuleuven.be/handle/123456789/675383
Publikováno v:
VISIGRAPP (4: VISAPP)
Autor:
Hector Gerardo Munoz Hernandez, Nele Mentens, Diana Gohringer, Toon Goedemé, Muhammad Ali, Jan Lemeire, Marcelo Brandalero, Kristof Van Beeck, Laurens Le Jeune, Bruno da Silva, Mitko Veleski, Abdellah Touhafi, Michael Hübner
Publikováno v:
COINS
New achievements in Artificial Intelligence (AI) and Machine Learning (ML) are reported almost daily by the big companies. While those achievements are accomplished by fast and massive data processing techniques, the potential of embedded machine lea
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::211de0f17c91b3a86d3ecd7464c350c3
https://hdl.handle.net/20.500.14017/73a27ea0-4e76-4dca-b7ac-d494671d1df2
https://hdl.handle.net/20.500.14017/73a27ea0-4e76-4dca-b7ac-d494671d1df2