Zobrazeno 1 - 10
of 49
pro vyhledávání: '"Krishnapur, P. P."'
Autor:
Krishnapur, Manjunath, Yogeshwaran, D.
We consider covariance asymptotics for linear statistics of general stationary random measures in terms of their truncated pair correlation measure. We give exact infinite series-expansion formulas for covariance of smooth statistics of random measur
Externí odkaz:
http://arxiv.org/abs/2411.08848
The scaled and centered largest eigenvalue of the $n\times n$ principal minor of an infinite GUE matrix, denoted by $\widetilde{\lambda}_n$, converges to the GUE Tracy-Widom distribution. We show that $\liminf\limits_{n\to \infty}(\log n)^{-1/3}\wide
Externí odkaz:
http://arxiv.org/abs/2410.11836
Hermite and Laguerre $\beta$-ensembles are important and well studied models in random matrix theory with special cases $\beta=1,2,4$ corresponding to eigenvalues of classical random matrix ensembles. It is well known that the largest eigenvalues in
Externí odkaz:
http://arxiv.org/abs/2405.12215
A classically studied geometric property associated to a complex polynomial $p$ is the inradius (the radius of the largest inscribed disk) of its (filled) lemniscate $\Lambda := \{z \in \mathbb{C}:|p(z)| < 1\}$. In this paper, we study the lemniscate
Externí odkaz:
http://arxiv.org/abs/2301.13424
We consider the average number of limit cycles that bifurcate from a randomly perturbed linear center where the perturbation consists of random (bivariate) polynomials with independent coefficients. This problem reduces, by way of classical perturbat
Externí odkaz:
http://arxiv.org/abs/2112.05672
Autor:
Krishnapur, Manjunath
Two proofs of the Koml\'os-Major-Tusn\'ady embedding theorems, one for the uniform empirical process and one for the simple symmetric random walk, are given. More precisely, what are proved are the univariate coupling results needed in the proofs, su
Externí odkaz:
http://arxiv.org/abs/2008.03287
Consider a random word $X^n=(X_1,\ldots ,X_n)$ in an alphabet consisting of $4$ letters, with the letters viewed either as $A$, $U$, $G$ and $C$ (i.e., nucleotides in an RNA sequence) or $\alpha$, $\bar{\alpha}$, $\beta$ and $\bar{\beta}$ (i.e., gene
Externí odkaz:
http://arxiv.org/abs/2007.12109
Autor:
Kashyap, Navin, Krishnapur, Manjunath
We show, by an explicit construction, that a mixture of univariate Gaussian densities with variance $1$ and means in $[-A,A]$ can have $\Omega(A^2)$ modes. This disproves a recent conjecture of Dytso, Yagli, Poor and Shamai \cite{DYPS20} who showed t
Externí odkaz:
http://arxiv.org/abs/2005.01580
For the last passage percolation (LPP) on $\mathbb{Z}^2$ with exponential passage times, let $T_{n}$ denote the passage time from $(1,1)$ to $(n,n)$. We investigate the law of iterated logarithm of the sequence $\{T_{n}\}_{n\geq 1}$; we show that $\l
Externí odkaz:
http://arxiv.org/abs/1909.01333
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.