Zobrazeno 1 - 10
of 19
pro vyhledávání: '"Krishna, Siddhi"'
Autor:
Krishna, Siddhi
We study positive braid knots (the knots in the three-sphere realized as positive braid closures) through the lens of the L-space conjecture. This conjecture predicts that if $K$ is a non-trivial positive braid knot, then for all $r < 2g(K)-1$, the 3
Externí odkaz:
http://arxiv.org/abs/2312.00196
Autor:
Krishna, Siddhi, Morton, Hugh
Many well studied knots can be realized as positive braid knots where the braid word contains a positive full twist; we say that such knots are twist positive. Some important families of knots are twist positive, including torus knots, 1-bridge braid
Externí odkaz:
http://arxiv.org/abs/2211.17109
In this work, we find a closed form formula for the braid index of an $n$-bridge braid, a class of positive braid knots which simultaneously generalizes torus knots, 1-bridge braids, and twisted torus knots. Our proof is elementary, effective, and se
Externí odkaz:
http://arxiv.org/abs/2208.13655
Autor:
Krishna, Siddhi
Thesis advisor: Joshua E. Greene
We construct taut foliations in every closed 3-manifold obtained by r-framed Dehn surgery along a positive 3-braid knot K in S^3, where r < 2g(K)-1 and g(K) denotes the Seifert genus of K. This confirms a predict
We construct taut foliations in every closed 3-manifold obtained by r-framed Dehn surgery along a positive 3-braid knot K in S^3, where r < 2g(K)-1 and g(K) denotes the Seifert genus of K. This confirms a predict
Externí odkaz:
http://hdl.handle.net/2345/bc-ir:108731
Autor:
Hayden, Kyle, Kjuchukova, Alexandra, Krishna, Siddhi, Miller, Maggie, Powell, Mark, Sunukjian, Nathan
This paper investigates the exotic phenomena exhibited by links of disconnected surfaces with boundary that are properly embedded in the 4-ball. Our main results provide two different constructions of exotic pairs of surface links that are Brunnian,
Externí odkaz:
http://arxiv.org/abs/2106.13776
Autor:
Krishna, Siddhi
Publikováno v:
Journal of Topology. 13 (2020), no. 3. 1003-1033
We construct taut foliations in every closed 3-manifold obtained by $r$-framed Dehn surgery along a positive 3-braid knot $K$ in $S^3$, where $r < 2g(K)-1$ and $g(K)$ denotes the Seifert genus of $K$. This confirms a prediction of the L-space Conject
Externí odkaz:
http://arxiv.org/abs/1809.03959
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Journal of Knot Theory & Its Ramifications; Nov2023, Vol. 32 Issue 13, p1-22, 22p
Autor:
Krishna, Siddhi1 siddhi.krishna@bc.edu
Publikováno v:
Journal of Topology. Sep2020, Vol. 13 Issue 3, p1003-1033. 31p.
Autor:
DeScioli, Peter, Krishna, Siddhi
Publikováno v:
In Journal of Economic Psychology February 2013 34:218-228