Zobrazeno 1 - 10
of 110
pro vyhledávání: '"Kriel J"'
We develop scattering theory in a non-commutative space defined by a $su(2)$ coordinate algebra. By introducing a positive operator valued measure as a replacement for strong position measurements, we are able to derive explicit expressions for the p
Externí odkaz:
http://arxiv.org/abs/1612.01306
The formalism of quantum state space geometry on manifolds of generalised coherent states is proposed as a natural setting for the construction of geometric dual descriptions of non-relativistic quantum systems. These state manifolds are equipped wit
Externí odkaz:
http://arxiv.org/abs/1509.02040
We use the recently derived density of states for a particle confined to a spherical well in three dimensional fuzzy space to compute the thermodynamics of a gas of non-interacting fermions confined to such a well. Special emphasis is placed on non-c
Externí odkaz:
http://arxiv.org/abs/1508.05799
We develop the formalism of quantum mechanics on three dimensional fuzzy space and solve the Schr\"odinger equation for a free particle, finite and infinite fuzzy wells. We show that all results reduce to the appropriate commutative limits. A high en
Externí odkaz:
http://arxiv.org/abs/1407.5857
Autor:
Kriel, J. N., Scholtz, F. G.
We use the well-known isomorphism between operator algebras and function spaces equipped with a star product to study the asymptotic properties of certain matrix sequences in which the matrix dimension $D$ tends to infinity. Our approach is based on
Externí odkaz:
http://arxiv.org/abs/1206.0820
Autor:
Kriel, J N, Scholtz, F G
We construct an explicit duality between the interacting quantum Hall system in the lowest Landau level and a non-interacting Landau problem. This is done by absorbing the interaction into the gauge field in the form of an effective magnetic vector p
Externí odkaz:
http://arxiv.org/abs/cond-mat/0702101
Autor:
Kriel, J. N.
Publikováno v:
J N Kriel et al 2005 J. Phys. A: Math. Gen. 38 205-226
The goal of this thesis is the development and implementation of a non-perturbative solution method for Wegner's flow equations. We show that a parameterization of the flowing Hamiltonian in terms of a scalar function allows the flow equation to be r
Externí odkaz:
http://arxiv.org/abs/cond-mat/0602022
Publikováno v:
J.Phys. A38 (2005) 205-226
We use a novel parameterization of the flowing Hamiltonian to show that the flow equations based on continuous unitary transformations, as proposed by Wegner, can be implemented through a nonlinear partial differential equation involving one flow par
Externí odkaz:
http://arxiv.org/abs/cond-mat/0408420
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.