Zobrazeno 1 - 10
of 79
pro vyhledávání: '"Kriegler, Christoph"'
Autor:
Arhancet, Cédric, Kriegler, Christoph
For any non-archimedean local field $\mathbb{K}$ and any integer $n \geq 1$, we show that the Taibleson operator admits a bounded $H^\infty(\Sigma\_\theta)$ functional calculus for any angle $\theta \> 0$ on the Banach space $L^p(\mathbb{K}^n)$, wher
Externí odkaz:
http://arxiv.org/abs/2407.10508
Autor:
Deleaval, Luc, Kriegler, Christoph
This article is the continuation of the work [DK] where we had proved maximal estimates $$\left\|\sup_{t > 0} |m(tA)f| \right\|_{L^p(\Omega,Y)} \leq C \|f\|_{L^p(\Omega,Y)}$$ for sectorial operators $A$ acting on $L^p(\Omega,Y)$ ($Y$ being a UMD latt
Externí odkaz:
http://arxiv.org/abs/2404.01893
This paper investigates the functional calculus of the harmonic oscillator on each Moyal-Groenewold plane, the noncommutative phase space which is a fundamental object in quantum mechanics. Specifically, we show that the harmonic oscillator admits a
Externí odkaz:
http://arxiv.org/abs/2312.06143
Let $G$ be a locally compact unimodular group, let $1\leq p<\infty$,let $\phi\in L^\infty(G)$ and assume that the Fourier multiplier $M_\phi$associated with $\phi$ is bounded on the noncommutative $L^p$-space $L^p(VN(G))$.Then $M_\phi\colon L^p(VN(G)
Externí odkaz:
http://arxiv.org/abs/2303.13983
Autor:
Arhancet, Cédric, Kriegler, Christoph
We prove that the Fourier-Stieltjes algebra $\mathrm{B}(G)$ of a discrete group $G$ is isometrically isomorphic to the algebra $\mathfrak{M}^{\infty,\mathrm{dec}}(G)$ of decomposable Fourier multipliers on the group von Neumann algebra $\mathrm{VN}(G
Externí odkaz:
http://arxiv.org/abs/2205.13823
Autor:
Deleaval, Luc, Kriegler, Christoph
Let $A$ be a generator of an analytic semigroup having a H{\"o}rmander functional calculus on $X = L^p(\Omega ,Y)$, where $Y$ is a UMD lattice. Using methods from Banach space geometry in connection with functional calculus, we show that for H{\"o}rm
Externí odkaz:
http://arxiv.org/abs/2203.03263
Let $(T_t)_{t \geq 0}$ be a markovian (resp. submarkovian) semigroup on some $\sigma$-finite measure space $(\Omega,\mu)$. We prove that its negative generator $A$ has a bounded $H^\infty(\Sigma_\theta)$ calculus on the weighted space $L^2(\Omega,wd\
Externí odkaz:
http://arxiv.org/abs/1910.03979
Autor:
Arhancet, Cédric, Kriegler, Christoph
In this work, we solve the problem explicitly stated at the end of a paper of Junge, Mei and Parcet [JEMS2018, Problem C.5] for a large class of groups including all amenable groups and free groups. More precisely, we prove that the Hodge-Dirac opera
Externí odkaz:
http://arxiv.org/abs/1903.10151
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Arhancet, Cédric, Kriegler, Christoph
In this short note, we prove that the subspace of radial multipliers is contractively complemented in the space of Fourier multipliers on the Bochner space $\mathrm{L}^p(\mathbb{R}^n,X)$ where $X$ is a Banach space and where $1 \leq p <\infty$. Moreo
Externí odkaz:
http://arxiv.org/abs/1806.11296