Zobrazeno 1 - 10
of 68
pro vyhledávání: '"Kriegl, Andreas"'
Autor:
Chruściel, Piotr T., Delay, Erwann, Klinger, Paul, Kriegl, Andreas, Michor, Peter W., Rainer, Armin
Publikováno v:
Letters in Mathematical Physics 108, 9 (September 2018), 2009-2030
We prove existence of large families of solutions of Einstein-complex scalar field equations with a negative cosmological constant, with a stationary or static metric and a time-periodic complex scalar field.
Comment: 21 pages, v2: journal accep
Comment: 21 pages, v2: journal accep
Externí odkaz:
http://arxiv.org/abs/1708.02878
Publikováno v:
Indagationes Mathematicae 27 (2016) 225-265
We prove the exponential law $\mathcal A(E \times F, G) \cong \mathcal A(E,\mathcal A(F,G))$ (bornological isomorphism) for the following classes $\mathcal A$ of test functions: $\mathcal B$ (globally bounded derivatives), $W^{\infty,p}$ (globally $p
Externí odkaz:
http://arxiv.org/abs/1411.0483
Publikováno v:
Ann. Glob. Anal. Geom. 47, 2 (2015), 179-222
Let $C^{[M]}$ be a (local) Denjoy-Carleman class of Beurling or Roumieu type, where the weight sequence $M=(M_k)$ is log-convex and has moderate growth. We prove that the groups ${\operatorname{Diff}}\mathcal{B}^{[M]}(\mathbb{R}^n)$, ${\operatorname{
Externí odkaz:
http://arxiv.org/abs/1404.7033
Publikováno v:
Revista Matem\'atica Complutense 28, 3 (2015), 549-597
We prove in a uniform way that all Denjoy--Carleman differentiable function classes of Beurling type $C^{(M)}$ and of Roumieu type $C^{\{M\}}$, admit a convenient setting if the weight sequence $M=(M_k)$ is log-convex and of moderate growth: For $\ma
Externí odkaz:
http://arxiv.org/abs/1111.1819
Publikováno v:
J. Lie Theory 22, 1 (2012), 245-249
We improve the main results in the paper from the title using a recent refinement of Bronshtein's theorem due to Colombini, Orr\'u, and Pernazza. They are then in general best possible both in the hypothesis and in the outcome. As a consequence we ob
Externí odkaz:
http://arxiv.org/abs/1106.6041
Publikováno v:
Integral Equations and Operator Theory 71,3 (2011), 407-416
Let $t\mapsto A(t)$ for $t\in T$ be a $C^M$-mapping with values unbounded operators with compact resolvents and common domain of definition which are self-adjoint or normal. Here $C^M$ stands for $C^\om$ (real analytic), a quasianalytic or non-quasia
Externí odkaz:
http://arxiv.org/abs/0910.0155
Publikováno v:
J. Functional Analysis 261, 7 (2011) 1799-1834
For quasianalytic Denjoy--Carleman differentiable function classes $C^Q$ where the weight sequence $Q=(Q_k)$ is log-convex, stable under derivations, of moderate growth and also an $\mathcal L$-intersection (see 1.6), we prove the following: The cate
Externí odkaz:
http://arxiv.org/abs/0909.5632
Publikováno v:
J. Functional Analysis 256 (2009), 3510-3544
For Denjoy--Carleman differential function classes $C^M$ where the weight sequence $M=(M_k)$ is logarithmically convex, stable under derivations, and non-quasianalytic of moderate growth, we prove the following: A mapping is $C^M$ if it maps $C^M$-cu
Externí odkaz:
http://arxiv.org/abs/0804.2995
Publikováno v:
Math. Ann. 353, 2 (2012), 519-522
If $u\mapsto A(u)$ is a $C^{0,\alpha}$-mapping, for $0< \alpha \le 1$, having as values unbounded self-adjoint operators with compact resolvents and common domain of definition, parametrized by $u$ in an (even infinite dimensional) space, then any co
Externí odkaz:
http://arxiv.org/abs/math/0611506