Zobrazeno 1 - 10
of 161
pro vyhledávání: '"Krieg, Aloys"'
We will characterize the Eisenstein series for O(2, n + 2) as a particular Hecke eigenform. As an application we show that it belongs to the associated Maa{\ss} space. If the underlying lattice is even and unimodular, this leads to an explicit formul
Externí odkaz:
http://arxiv.org/abs/2308.10709
We consider the Hermitian Eisenstein series $E^{(\mathbb{K})}_k$ of degree $2$ and weight $k$ associated with an imaginary-quadratic number field $\mathbb{K}$ and determine the influence of $\mathbb{K}$ on the arithmetic and the growth of its Fourier
Externí odkaz:
http://arxiv.org/abs/2205.12492
We derive an explicit isomorphism between the Hilbert modular group and certain congruence subgroups on the one hand and particular subgroups of the special orthogonal group $SO(2, 2)$ on the other hand. The proof is based on an application of linear
Externí odkaz:
http://arxiv.org/abs/2112.11293
Publikováno v:
In Journal of Number Theory September 2024 262:454-470
Autor:
Krieg, Aloys, Schaps, Felix
We characterize the maximal discrete subgroups of $SO^+(2,n+2)$, which contain the discriminant kernel of an even lattice, which contains two hyperbolic planes over $\mathbb{Z}$. They coincide with the normalizers in $SO^+(2,n+2)$ and are given by th
Externí odkaz:
http://arxiv.org/abs/2106.00529
We derive explicit isomorphisms between certain congruence subgroups of the Siegel modular group, the Hermitian modular group over an arbitrary imaginary-quadratic number field and the modular group over the Hurwitz quaternions of degree 2 and the di
Externí odkaz:
http://arxiv.org/abs/2011.09807
In this paper we outline the Hecke theory for Hermitian modular forms in the sense of Hel Braun for arbitrary class number of the attached imaginary-quadratic number field. The Hecke algebra turns out to be commutative. Its inert part has a structure
Externí odkaz:
http://arxiv.org/abs/1911.03157
Let $\Gamma_n(\mathcal{\scriptstyle{O}}_\mathbb{K})$ denote the Hermitian modular group of degree $n$ over an imaginary-quadratic number field $\mathbb{K}$. In this paper we determine its maximal discrete extension in $SU(n,n;\mathbb{C})$, which coin
Externí odkaz:
http://arxiv.org/abs/1910.12466
Autor:
Baumann, Martin, Gerards, Marcus, Karami, Mazdak, Krieg, Aloys, Nacken, Heribert, Wernz, Annalena
Teaching is Touching the Future ist eine Tagungsreihe, welche sich das Ziel gesetzt hat, aus den fachlichen Disziplinen heraus die Hochschullehre der Zukunft zu gestalten. In diesem Selbstverständnis fand sie an der RWTH Aachen im September 2016 in
Let $\mathcal{\scriptstyle{O}}_K$ be the ring of integers of an imaginary quadratic number field $K$. In this paper we give a new description of the maximal discrete extension of the group $SL_2(\mathcal{\scriptstyle{O}}_K)$ inside $SL_2(\mathbb{C})$
Externí odkaz:
http://arxiv.org/abs/1811.08251