Zobrazeno 1 - 10
of 129
pro vyhledávání: '"Kreuzer, Christian"'
Autor:
Dorfleitner, Gregor1 (AUTHOR) gregor.dorfleitner@ur.de, Kreuzer, Christian1 (AUTHOR)
Publikováno v:
Schmalenbach Journal of Business Research (SBUR). Sep2024, Vol. 76 Issue 3, p433-461. 29p.
Publikováno v:
In Finance Research Letters November 2024 69 Part B
Autor:
Diening, Lars, Kreuzer, Christian
It is an open question if the threshold condition $\theta < \theta_\star$ for the D\"orfler marking parameter is necessary to obtain optimal algebraic rates of adaptive finite element methods. We present a (non-PDE) example fitting into the common ab
Externí odkaz:
http://arxiv.org/abs/2003.10940
We approximate the solution of the Stokes equations by a new quasi-optimal and pressure robust discontinuous Galerkin discretization of arbitrary order. This means quasi-optimality of the velocity error independent of the pressure. Moreover, the disc
Externí odkaz:
http://arxiv.org/abs/2002.11454
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We develop a basic convergence analysis for an adaptive $\textsf{C}^0\textsf{IPG}$ method for the Biharmonic problem, which provides convergence without rates for all practically relevant marking strategies and all penalty parameters assuring coerciv
Externí odkaz:
http://arxiv.org/abs/1910.12959
Publikováno v:
Math. Comp. 87 (2018), no. 314, 2611--2640
We develop a general convergence theory for adaptive discontinuous Galerkin methods for elliptic PDEs covering the popular SIPG, NIPG and LDG schemes as well as all practically relevant marking strategies. Another key feature of the presented result
Externí odkaz:
http://arxiv.org/abs/1909.12665
We consider finite element solutions to quadratic optimization problems, where the state depends on the control via a well-posed linear partial differential equation. Exploiting the structure of a suitably reduced optimality system, we prove that the
Externí odkaz:
http://arxiv.org/abs/1904.07049
Autor:
Kreuzer, Christian, Veeser, Andreas
In a posteriori error analysis, the relationship between error and estimator is usually spoiled by so-called oscillation terms, which cannot be bounded by the error. In order to remedy, we devise a new approach where the oscillation has the following
Externí odkaz:
http://arxiv.org/abs/1903.05915
Autor:
Kreuzer, Christian, Zanotti, Pietro
We approximate the solution of the stationary Stokes equations with various conforming and nonconforming inf-sup stable pairs of finite element spaces on simplicial meshes. Based on each pair, we design a discretization that is quasi-optimal and pres
Externí odkaz:
http://arxiv.org/abs/1902.03313