Zobrazeno 1 - 10
of 540
pro vyhledávání: '"Kravchuk polynomials"'
Autor:
Yan Zhu
Publikováno v:
Graphs and Combinatorics. 37:1775-1791
Relative t-designs in binary Hamming association schemes are equivalent to weighted regular t-wise balanced designs which are studied to some extent. In the paper, we extend the investigation to relative t-designs in nonbinary Hamming association sch
Autor:
J. Arvesú, A. M. Ramírez-Aberasturis
Publikováno v:
Integral Transforms and Special Functions. 32:361-376
We study a family of type II multiple orthogonal polynomials. We consider orthogonality conditions with respect to a vector measure, in which each component is a q-analogue of the binomial distribu...
Autor:
Koei Kawamura
Publikováno v:
Funkcialaj Ekvacioj. 64:75-118
Publikováno v:
ANNALES HENRI POINCARE
The oscillator Racah algebra $\mathcal{R}_n(\mathfrak{h})$ is realized by the intermediate Casimir operators arising in the multifold tensor product of the oscillator algebra $\mathfrak{h}$. An embedding of the Lie algebra $\mathfrak{sl}_{n-1}$ into
Autor:
Norris Sookoo
Publikováno v:
Journal of Discrete Mathematical Sciences and Cryptography. 23:1421-1430
In this article, the eigenmatrix of an association scheme called the composition scheme is obtained and expressed in terms of generalized Krawtchouk polynomials. It is established that generalized ...
Publikováno v:
IEEE Access, Vol 8, Pp 41013-41025 (2020)
Orthogonal moments are beneficial tools for analyzing and representing images and objects. Different hybrid forms, which are first and second levels of combination, have been created from the Tchebichef and Krawtchouk polynomials. In this study, all
Publikováno v:
Mathematical Programming, 197, 621-660
Integer Programming and Combinatorial Optimization-Proceedings of the 22nd International Conference, IPCO 2021, 43-57
STARTPAGE=43;ENDPAGE=57;TITLE=Integer Programming and Combinatorial Optimization-Proceedings of the 22nd International Conference, IPCO 2021
Mathematical Programming
Mathematical Programming, 2023, 197 (2), pp.621-660. ⟨10.1007/s10107-021-01745-9⟩
Integer Programming and Combinatorial Optimization ISBN: 9783030738785
IPCO
Mathematical Programming, 197, 621-660. Springer
Integer Programming and Combinatorial Optimization-Proceedings of the 22nd International Conference, IPCO 2021, 43-57
STARTPAGE=43;ENDPAGE=57;TITLE=Integer Programming and Combinatorial Optimization-Proceedings of the 22nd International Conference, IPCO 2021
Mathematical Programming
Mathematical Programming, 2023, 197 (2), pp.621-660. ⟨10.1007/s10107-021-01745-9⟩
Integer Programming and Combinatorial Optimization ISBN: 9783030738785
IPCO
Mathematical Programming, 197, 621-660. Springer
We consider the sum-of-squares hierarchy of approximations for the problem of minimizing a polynomial $f$ over the boolean hypercube $\mathbb{B}^{n}=\{0,1\}^n$. This hierarchy provides for each integer $r \in \mathbb{N}$ a lower bound $f_{(r)}$ on th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::05d5c42176a7c0ce569054162401b36c
https://ir.cwi.nl/pub/31368
https://ir.cwi.nl/pub/31368
Autor:
Khaled A. Al-Utaibi, Sadiq H. Abdulhussain, Marwah Abdulrazzaq Naser, Sadiq M. Sait, Basheera M. Mahmmod, Muntadher Alsabah
Publikováno v:
Entropy
Volume 23
Issue 9
Entropy, Vol 23, Iss 1162, p 1162 (2021)
Volume 23
Issue 9
Entropy, Vol 23, Iss 1162, p 1162 (2021)
Krawtchouk polynomials (KPs) and their moments are promising techniques for applications of information theory, coding theory, and signal processing. This is due to the special capabilities of KPs in feature extraction and classification processes. T
Autor:
Robert C. Griffiths, Persi Diaconis
Publikováno v:
Journal of Approximation Theory. 242:1-30
Diaconis and Griffiths (2014) study the multivariate Krawtchouk polynomials orthogonal on the multinomial distribution. In this paper we derive the reproducing kernel orthogonal polynomials Q n ( x , y ; N , p ) on the multinomial distribution which
Autor:
Hyung-Tae Ha
Publikováno v:
Journal of the Korean Data And Information Science Society. 30:693-702