Zobrazeno 1 - 10
of 35
pro vyhledávání: '"Kraus, Christina V."'
Autor:
Bühler, Adam, Lang, Nicolai, Kraus, Christina V., Möller, Gunnar, Huber, Sebastian D., Büchler, Hans Peter
Publikováno v:
Nature Communications 5, 4504 (2014)
We present a simple approach to create a strong $p$-wave interaction for fermions in an optical lattice. The crucial step is that the combination of a lattice setup with different orbital states and $s$-wave interactions can give rise to a strong ind
Externí odkaz:
http://arxiv.org/abs/1403.0593
Publikováno v:
Phys. Rev. A. 88, 022335 (2013)
We study the ground states of lattice Hamiltonians that are invariant under permutations, in the limit where the number of lattice sites, N -> \infty. For spin systems, these are product states, a fact that follows directly from the quantum de Finett
Externí odkaz:
http://arxiv.org/abs/1305.4577
Publikováno v:
Phys. Rev. Lett. 111, 203001 (2013)
We propose an efficient protocol for braiding atomic Majorana fermions in wire networks with AMO techniques and demonstrate its robustness against experimentally relevant errors. Based on this protocol we provide a topologically protected implementat
Externí odkaz:
http://arxiv.org/abs/1302.1824
Autor:
Kraus, Christina V., Dalmonte, Marcello, Baranov, Mikhail A., Laeuchli, Andreas M., Zoller, P.
Publikováno v:
Phys. Rev. Lett. 111, 173004 (2013)
We present evidence for the existence of Majorana edge states in a number conserving theory describing a system of spinless fermions on two wires that are coupled by a pair hopping. Our analysis is based on the combination of a qualitative low energy
Externí odkaz:
http://arxiv.org/abs/1302.0701
Publikováno v:
Phys. Rev. A 86, 062115 (2012)
We extend the time-dependent variational principle to the setting of dissipative dynamics. This provides a locally optimal (in time) approximation to the dynamics of any Lindblad equation within a given variational manifold of mixed states. In contra
Externí odkaz:
http://arxiv.org/abs/1206.3102
Publikováno v:
Phys. Rev. B 88, 195126 (2013)
We study the variational solution of generic interacting fermionic lattice systems using fermionic Gaussian states and show that the process of "gaussification", leading to a nonlinear closed equation of motion for the covariance matrix, is locally o
Externí odkaz:
http://arxiv.org/abs/1205.5113
Publikováno v:
New J. Phys. 14 (2012) 113036
We introduce a one-dimensional system of fermionic atoms in an optical lattice whose phase diagram includes topological states of different symmetry classes. These states can be identified by their zero-energy edge modes which are Majorana fermions.
Externí odkaz:
http://arxiv.org/abs/1201.3253
Publikováno v:
New J. Phys. 13, 065010 (2011)
In this paper we prove, extend and review possible mappings between the two-dimensional Cluster state, Wen's model, the two-dimensional Ising chain and Kitaev's toric code model. We introduce a two-dimensional duality transformation to map the two-di
Externí odkaz:
http://arxiv.org/abs/1105.2111
Autor:
Kraus, Christina V., Cirac, J. Ignacio
Publikováno v:
New J. Phys. 12 113004 (2010)
We present numerical methods to solve the Generalized Hartree-Fock theory for fermionic systems in lattices, both in thermal equilibrium and out of equilibrium. Specifically, we show how to determine the covariance matrix corresponding to the Fermion
Externí odkaz:
http://arxiv.org/abs/1005.5284
Publikováno v:
Phys. Rev. A 81, 052338 (2010)
We introduce a family of states, the fPEPS, which describes fermionic systems on lattices in arbitrary spatial dimensions. It constitutes the natural extension of another family of states, the PEPS, which efficiently approximate ground and thermal st
Externí odkaz:
http://arxiv.org/abs/0904.4667