Zobrazeno 1 - 10
of 391
pro vyhledávání: '"Krattenthaler, C."'
Autor:
Cigler, J., Krattenthaler, C.
Publikováno v:
In European Journal of Combinatorics October 2024 121
Autor:
Krattenthaler, C.
Let $p_n(x)$, $n=0,1,\dots$, be the orthogonal polynomials with respect to a given density $d\mu(x)$. Furthermore, let $d\nu(x)$ be a density which arises from $d\mu(x)$ by multiplication by a rational function in $x$. We prove a formula that express
Externí odkaz:
http://arxiv.org/abs/2103.03969
Publikováno v:
In Journal of Symbolic Computation March-April 2025 127
Autor:
Krattenthaler, C.
Publikováno v:
in: "The Mathematical Legacy of Richard P. Stanley" P. Hersh, T. Lam, P. Pylyavskyy and V. Reiner (eds.), Amer. Math. Soc., R.I., 2016, pp. 246-277
These notes provide a survey of the theory of plane partitions, seen through the glasses of the work of Richard Stanley and his school.
Comment: AmS-LaTeX, 33 pages; article written for the 70th-birthday volume honoring Richard Stanley; some com
Comment: AmS-LaTeX, 33 pages; article written for the 70th-birthday volume honoring Richard Stanley; some com
Externí odkaz:
http://arxiv.org/abs/1503.05934
Autor:
Krattenthaler, C.
Publikováno v:
Handbook of Enumerative Combinatorics, M. B\'ona (ed.), Discrete Math. and Its Appl., CRC Press, Boca Raton-London-New York, 2015, pp. 589-678
This is a survey of results in the enumeration of lattice paths.
Comment: AmS-LaTeX, 83 pages; fixed the missing references
Comment: AmS-LaTeX, 83 pages; fixed the missing references
Externí odkaz:
http://arxiv.org/abs/1503.05930
Autor:
Krattenthaler, C., Müller, Thomas W.
Publikováno v:
J. Number Theory 147 (2015), 708-720
We characterise the modular behaviour of (generalised) Ap\'ery number modulo $9$, thereby in particular establishing two conjectures in "A method for determining the mod-$3^k$ behaviour of recursive sequences" [arXiv:1308.2856].
Comment: AmS-LaT
Comment: AmS-LaT
Externí odkaz:
http://arxiv.org/abs/1401.1444
Autor:
Guo, Victor J. W., Krattenthaler, C.
Publikováno v:
J. Number Theory 135 (2014), 167-184
We first prove that if $a$ has a prime factor not dividing $b$ then there are infinitely many positive integers $n$ such that $\binom {an+bn} {an}$ is not divisible by $bn+1$. This confirms a recent conjecture of Z.-W. Sun. Moreover, we provide some
Externí odkaz:
http://arxiv.org/abs/1301.7651
Publikováno v:
JHEP 1106:008,2011
Recently, Kim and Imamura and Yokoyama derived an exact formula for superconformal indices in three-dimensional field theories. Using their results, we prove analytically the equality of superconformal indices in some U(1)-gauge group theories relate
Externí odkaz:
http://arxiv.org/abs/1103.4075