Zobrazeno 1 - 10
of 105
pro vyhledávání: '"Kramer, Jürg"'
In this article, we give bounds for the natural invariant norm of cusp forms of real weight $k$ and character $\chi$ for any cofinite Fuchsian subgroup $\Gamma\subset\mathrm{SL}_{2}(\mathbb{R})$. Using the representation of Jacobi cusp forms of integ
Externí odkaz:
http://arxiv.org/abs/2404.13625
Autor:
Gil, José Ignacio Burgos, Kramer, Jürg
In this paper we extend the arithmetic intersection theory of adelic divisors on quasiprojective varieties developed by X. Yuan and S. W. Zhang to cover certain adelic arithmetic divisors that are not nef nor integrable. The key concept used in this
Externí odkaz:
http://arxiv.org/abs/2403.11745
Autor:
Kramer, Jürg, Mandal, Antareep
Let $\Gamma\subsetneq \mathrm{Sp}_n(\mathbb{R})$ be an arithmetic subgroup of the symplectic group $\mathrm{Sp}_n(\mathbb{R})$ acting on the Siegel upper half-space $\mathbb{H}_n$ of degree $n$. Consider the $d$-dimensional space of Siegel cusp forms
Externí odkaz:
http://arxiv.org/abs/2310.05334
Autor:
Kramer, Jürg, Mandal, Antareep
In this paper we generalize a well-known isomorphism between the space of cusp forms of weight $k$ for a Fuchsian subgroup of the first kind $\Gamma \subset\mathrm{SL}_{2}(\mathbb{R})$ and the space of certain Maa{\ss} forms of weight $k$ for $\Gamma
Externí odkaz:
http://arxiv.org/abs/2203.09853
Let $\Gamma\subset\mathrm{PSL}_{2}(\mathbb{R})$ be a Fuchsian subgroup of the first kind acting on the upper half-plane $\mathbb{H}$. Consider the $d_{2k}$-dimensional space of cusp forms $\mathcal{S}_{2k}^{\Gamma}$ of weight $2k$ for $\Gamma$, and l
Externí odkaz:
http://arxiv.org/abs/1801.05740
Autor:
Kramer, Jürg
Publikováno v:
Mathematische Semesterberichte; Oct2024, Vol. 71 Issue 2, p119-134, 16p
Autor:
KAPPELER, THOMAS, KRAMER, JÜRG
Publikováno v:
Operators & Matrices; Sep2024, Vol. 18 Issue 3, p641-663, 23p
A theorem by Mumford implies that every automorphic line bundle on a pure open Shimura variety, equipped with an invariant smooth metric, can be uniquely extended as a line bundle on a toroidal compactification of the variety, in such a way that the
Externí odkaz:
http://arxiv.org/abs/1405.3075
Autor:
Jorgenson, Jay, Kramer, Jürg
Publikováno v:
Annals of Mathematics, 2009 Jul 01. 170(1), 1-43.
Externí odkaz:
https://www.jstor.org/stable/40345458
Autor:
Wartenburger, Isabell, Heekeren, Hauke R., Preusse, Franziska, Kramer, Jürg, van der Meer, Elke
Publikováno v:
In Neuroimage 2009 48(1):291-302