Zobrazeno 1 - 10
of 50
pro vyhledávání: '"Kralj Novak, Petra"'
Autor:
Hakert, Christian, Chen, Kuan-Hsun, Chen, Jian-Jia, Amini, Massih-Reza, Canu, Stéphane, Fischer, Asja, Guns, Tias, Kralj Novak, Petra, Tsoumakas, Grigorios
Publikováno v:
Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2022, Grenoble, France, September 19–23, 2022, Proceedings, Part V, 531-546
STARTPAGE=531;ENDPAGE=546;TITLE=Machine Learning and Knowledge Discovery in Databases
STARTPAGE=531;ENDPAGE=546;TITLE=Machine Learning and Knowledge Discovery in Databases
Random forests and decision trees are increasingly interesting candidates for resource-constrained machine learning models. In order to make the execution of these models efficient under resource limitations, various optimized implementations have be
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=narcis______::c974883a67007cd7619c65ae3eb5ff3d
https://research.utwente.nl/en/publications/ddc1fe7d-56e5-4a39-b84a-f2c36348bcb1
https://research.utwente.nl/en/publications/ddc1fe7d-56e5-4a39-b84a-f2c36348bcb1
Publikováno v:
Natural Language Engineering; Nov2023, Vol. 29 Issue 6, p1481-1494, 14p
Autor:
Huang, Tianjin, Pei, Yulong, Menkovski, Vlado, Pechenizkiy, Mykola, Amini, Massih-Reza, Canu, Stéphane, Fischer, Asja, Guns, Tias, Kralj Novak, Petra, Tsoumakas, Grigorios
Publikováno v:
Machine Learning and Knowledge Discovery in Databases-European Conference, ECML PKDD 2022, Proceedings, 225-241
STARTPAGE=225;ENDPAGE=241;TITLE=Machine Learning and Knowledge Discovery in Databases-European Conference, ECML PKDD 2022, Proceedings
Machine Learning and Knowledge Discovery in Databases ISBN: 9783031263866
STARTPAGE=225;ENDPAGE=241;TITLE=Machine Learning and Knowledge Discovery in Databases-European Conference, ECML PKDD 2022, Proceedings
Machine Learning and Knowledge Discovery in Databases ISBN: 9783031263866
A number of approaches for anomaly detection on attributed networks have been proposed. However, most of them suffer from two major limitations: (1) they rely on unsupervised approaches which are intrinsically less effective due to the lack of superv
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::979a555314529ea08f3e00784d16c814
https://research.tue.nl/nl/publications/e11d0061-73b6-4865-90de-6d5a619fd4c1
https://research.tue.nl/nl/publications/e11d0061-73b6-4865-90de-6d5a619fd4c1
Publikováno v:
Applied Network Science; 6/28/2023, Vol. 8 Issue 1, p1-24, 24p
Autor:
Garcia, Kemilly Dearo, de Faria, Elaine Ribeiro, de Sá, Cláudio Rebelo, Mendes-Moreira, João, Aggarwal, Charu C., de Carvalho, André C.P.L.F., Kok, Joost N., Kralj Novak, Petra, Džeroski, Sašo, Šmuc, Tomislav
Publikováno v:
Discovery Science ISBN: 9783030337773
DS
Discovery Science: 22nd International Conference, DS 2019, Splitm, Croatia, October 28-30, 2019. Proceedings, 460-470
STARTPAGE=460;ENDPAGE=470;TITLE=Discovery Science
DS
Discovery Science: 22nd International Conference, DS 2019, Splitm, Croatia, October 28-30, 2019. Proceedings, 460-470
STARTPAGE=460;ENDPAGE=470;TITLE=Discovery Science
In data streams new classes can appear over time due to changes in the data statistical distribution. Consequently, models can become outdated, which requires the use of incremental learning algorithms capable of detecting and learning the changes ov
Publikováno v:
In Journal of Biomedical Informatics 2009 42(1):113-122
Publikováno v:
Proceedings of the 12th Language Resources and Evaluation Conference (LREC2020)
We propose a new method that leverages contextual embeddings for the task of diachronic semantic shift detection by generating time specific word representations from BERT embeddings. The results of our experiments in the domain specific LiverpoolFC
Publikováno v:
PLoS ONE; 3/17/2022, Vol. 17 Issue 3, p1-22, 22p
Publikováno v:
Applied Network Science; 1/18/2022, Vol. 6 Issue 1, p1-20, 20p