Zobrazeno 1 - 10
of 42
pro vyhledávání: '"Kozlovski, O."'
Autor:
Kozlovski, O
In this paper we investigate how many periodic attractors maps in a small neighbourhood of a given map can have. For this purpose we develop new tools which help to make uniform cross-ratio distortion estimates in a neighbourhood of a map with degene
Externí odkaz:
http://arxiv.org/abs/1303.4248
Autor:
Kozlovski, O
In this paper we will study families of circle maps of the form $x\mapsto x+2\pi r + a f(x) \pmod{2\pi}$ and investigate how many periodic trajectories maps from this family can have for a "typical" function $f$ provided the parameter $a$ is small.
Externí odkaz:
http://arxiv.org/abs/1303.4245
Autor:
Kozlovski, O., Sands, D.
We introduce an infinite sequence of higher order Schwarzian derivatives closely related to the theory of monotone matrix functions. We generalize the classical Koebe lemma to maps with positive Schwarzian derivatives up to some order, obtaining cont
Externí odkaz:
http://arxiv.org/abs/0812.2646
Autor:
Kozlovski, O. S.
Publikováno v:
Annals of Mathematics, 2003 Jan 01. 157(1), 1-43.
Externí odkaz:
https://www.jstor.org/stable/3597163
Autor:
Kozlovski, O. S.
Publikováno v:
Annals of Mathematics, 2000 Nov 01. 152(3), 743-762.
Externí odkaz:
https://www.jstor.org/stable/2661353
In holomorphic dynamics, complex box mappings arise as first return maps to well-chosen domains. They are a generalization of polynomial-like mapping, where the domain of the return map can have infinitely many components. They turned out to be extre
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______1032::ba0aa5debe76e0bd3ea203637e02673e
http://hdl.handle.net/10044/1/95298
http://hdl.handle.net/10044/1/95298
Publikováno v:
Annals of Mathematics, 2007 Jul 01. 166(1), 145-182.
Externí odkaz:
https://www.jstor.org/stable/20160056
Publikováno v:
Annals of Mathematics, 2007 May 01. 165(3), 749-841.
Externí odkaz:
https://www.jstor.org/stable/20160046
Autor:
Kozlovski, O, Strien, SV
We consider a family of strongly-asymmetric unimodal maps $\{f_t\}_{t\in [0,1]}$ of the form $f_t=t\cdot f$ where $f\colon [0,1]\to [0,1]$ is unimodal, $f(0)=f(1)=0$, $f(c)=1$ is of the form and $$f(x)=\left\{ \begin{array}{ll} 1-K_-|x-c|+o(|x-c|)& \
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______1032::75faa7a37a7bf6a445c72921aa6952b3
http://hdl.handle.net/10044/1/77852
http://hdl.handle.net/10044/1/77852
Autor:
Graczyk, J.1, Kozlovski, O. S.2
Publikováno v:
Communications in Mathematical Physics. Jun2006, Vol. 264 Issue 3, p565-581. 17p. 2 Graphs.