Zobrazeno 1 - 10
of 144
pro vyhledávání: '"Kozłowski, Andrzej"'
Autor:
Kozlowski, Andrzej, Yamaguchi, Kohhei
For any field $\Bbb F$ and positive integers $m,n,d$ with $(m,n)\not= (1,1)$, Farb and Wolfson defined the certain affine varieties ${\rm Poly}^{d,m}_n(\Bbb F)$ as generalizations of spaces first studied by Arnold, Vassiliev, Segal and others. As a n
Externí odkaz:
http://arxiv.org/abs/2405.07372
Homotopy stability of spaces of non-resultant systems of bounded multiplicity with real coefficients
Autor:
Kozlowski, Andrzej, Yamaguchi, Kohhei
We continue our study of the topology of the spaces of $m$ tuples of real polynomials with common degree $d$ and without common roots of multiplicity $n$, and in particular their stability properties with respect to $d$. In an earlier paper we have p
Externí odkaz:
http://arxiv.org/abs/2305.00307
Autor:
Kozlowski, Andrzej, Yamaguchi, Kohhei
For each pair $(m,n)$ of positive integers with $(m,n)\not= (1,1)$ and an arbitrary field $\bf F$ with algebraic closure $\overline{\bf F}$, let $\rm Po^{d,m}_n(\bf F)$ denote the space of $m$-tuples $(f_1(z),\cdots ,f_m(z))\in \bf F [z]^m$ of $\bf F
Externí odkaz:
http://arxiv.org/abs/2212.05494
Autor:
Kozłowski, Andrzej, Yamaguchi, Kohhei
The space of non-resultant systems of bounded multiplicity for a toric variety X is a generalization of the space of rational curves on it. In our earlier work we proved a homotopy stability theorem and determined explicitly the homotopy type of this
Externí odkaz:
http://arxiv.org/abs/2105.14601
Autor:
Kozlowski, Andrzej, Yamaguchi, Kohhei
We investigate the homotopy type of the space of tuples of polynomials inducing base-point preserving algebraic maps from the circle S1 to a toric variety X{\Sigma}. In particular, we prove a homotopy stability result for this space by combining the
Externí odkaz:
http://arxiv.org/abs/2009.04255
Autor:
Baldini, Edoardo, Belvin, Carina A., Rodriguez-Vega, Martin, Ozel, Ilkem Ozge, Legut, Dominik, Kozłowski, Andrzej, Oleś, Andrzej M., Parlinski, Krzysztof, Piekarz, Przemysław, Lorenzana, José, Fiete, Gregory A., Gedik, Nuh
Publikováno v:
Nature Physics 16, 541-545 (2020)
The Verwey transition in magnetite (Fe$_3$O$_4$) is the first metal-insulator transition ever observed and involves a concomitant structural rearrangement and charge-orbital ordering. Due to the complex interplay of these intertwined degrees of freed
Externí odkaz:
http://arxiv.org/abs/2001.07815
Publikováno v:
Journal of Modern Science. 50(1):44-55
Externí odkaz:
https://www.ceeol.com/search/article-detail?id=1130380
Autor:
Kozlowski, Andrzej, Yamaguchi, Kohhei
For positive integers $d,m,n\geq 1$ with $(m,n)\not= (1,1)$ and $\Bbb K=\Bbb R$ or $\Bbb C$, let $Q^{d,m}_{n}(\Bbb K)$ denote the space of $m$-tuples $(f_1(z),\cdots ,f_m(z))\in \Bbb K [z]^m$ of $\Bbb K$-coefficients monic polynomials of the same deg
Externí odkaz:
http://arxiv.org/abs/1803.02154
Publikováno v:
Rocznik Bezpieczeństwa Międzynarodowego / The Yearbook of International Security. 16(1):54-78
Externí odkaz:
https://www.ceeol.com/search/article-detail?id=1070067
Autor:
Kozlowski, Andrzej, Yamaguchi, Kohhei
Spaces of holomorphic maps from the Riemann sphere to various complex manifolds (holomorphic curves ) have played an important role in several area of mathematics. In a seminal paper G. Segal investigated the homotopy type of holomorphic curves on co
Externí odkaz:
http://arxiv.org/abs/1707.02603