Zobrazeno 1 - 10
of 32
pro vyhledávání: '"Kovalenko, Sergii"'
Autor:
Patsiuk, Oleksii, Kovalenko, Sergii
Publikováno v:
Commun Nonlinear Sci Numer Simulat 62 (2018) 164--173
In this paper, we investigate the non-linear Black--Scholes equation: $$u_t+ax^2u_{xx}+bx^3u_{xx}^2+c(xu_x-u)=0,\quad a,b>0,\ c\geq0.$$ and show that the one can be reduced to the equation $$u_t+(u_{xx}+u_x)^2=0$$ by an appropriate point transformati
Externí odkaz:
http://arxiv.org/abs/1512.06151
A (2+1)-dimensional linear ultra-parabolic Fokker--Planck--Kolmogorov equation is investigated from the group-theoretical point of view. By using the Berest--Aksenov approach, an algebra of invariance of fundamental solutions of the equation is found
Externí odkaz:
http://arxiv.org/abs/1408.0166
Autor:
Kovalenko, Sergii, Soloviev, Veniamin
Publikováno v:
Z. Naturforsch. A. 69a (2014) 654-658
In the framework of the quantum-mechanical theory of elementary act of non-adiabatic electrochemical reactions, it is carried out the calculation of the discharge current of ions at the semiconductor--electrolyte solution interface using the model of
Externí odkaz:
http://arxiv.org/abs/1311.0639
Autor:
Cherniha, Roman, Kovalenko, Sergii
Publikováno v:
J. Phys. A: Math. Theor. 42 (2009) 355202
The (1+1)-dimensional nonlinear boundary value problem, modeling the process of melting and evaporation of metals, is studied by means of the classical Lie symmetry method. All possible Lie operators of the nonlinear heat equation, which allow us to
Externí odkaz:
http://arxiv.org/abs/1211.6908
Autor:
Cherniha, Roman, Kovalenko, Sergii
Publikováno v:
Banach Center Publ. 93 (2011) 95-104
A class of (1+1)--dimensional nonlinear boundary value problems (BVPs), modeling the process of melting and evaporation of solid materials, is studied by means of the classical Lie symmetry method. New definition of invariance in Lie's sense for BVP
Externí odkaz:
http://arxiv.org/abs/1211.6282
Autor:
Cherniha, Roman, Kovalenko, Sergii
Publikováno v:
J. Phys. A: Math. Theor. 44 (2011) 485202
A new definition of Lie invariance for nonlinear multi-dimensional boundary value problems (BVPs) is proposed by the generalization of known definitions to much wider classes of BVPs. The class of (1+3)-dimensional nonlinear BVPs of the Stefan type,
Externí odkaz:
http://arxiv.org/abs/1211.5510
Autor:
Kovalenko, Sergii
A definition of invariance in Lie's sense for a boundary value problem (BVP) with the basic evolution differential equations is proposed. A problem of group classification at a wide class of BVPs parameterized by arbitrary elements is formulated and
Externí odkaz:
http://arxiv.org/abs/1202.0705
Autor:
Cherniha, Roman, Kovalenko, Sergii
Publikováno v:
Commun. Nonlinear Sci. Numer. Simulat. 17 (2012) 71-84
Nonlinear boundary value problems (BVPs) by means of the classical Lie symmetry method are studied. A new definition of Lie invariance for BVPs is proposed by the generalization of existing those on much wider class of BVPs. A class of two-dimensiona
Externí odkaz:
http://arxiv.org/abs/1012.5606
Publikováno v:
In Communications in Nonlinear Science and Numerical Simulation July 2016 36:98-108
Autor:
Cherniha, Roman, Kovalenko, Sergii
Publikováno v:
In Communications in Nonlinear Science and Numerical Simulation 2012 17(1):71-84