Zobrazeno 1 - 10
of 14
pro vyhledávání: '"Koustav Banerjee"'
Autor:
Koustav Banerjee
Publikováno v:
Enumerative Combinatorics and Applications, Vol 3, Iss 2, p Article #S2R12 (2023)
Externí odkaz:
https://doaj.org/article/4093fb227e6e4027806f551369a0ca1d
Publikováno v:
Annals of Combinatorics.
In this paper, we explore intricate connections between Ramanujan’s theta functions and a class of partition functions defined by the nature of the parity of their parts. This consequently leads us to the parity analysis of the crank of a partition
Publikováno v:
The Ramanujan Journal.
Let p(n) denote the number of partitions of n. A new infinite family of inequalities for p(n) is presented. This generalizes a result by William Chen et al. From this infinite family, another infinite family of inequalities for $$\log p(n)$$ log p (
Autor:
Koustav Banerjee
Publikováno v:
Journal of Mathematical Analysis and Applications. 524:127082
Autor:
Koustav Banerjee, Sreerupa Bhattacharjee, Manosij Ghosh Dastidar, Pankaj Jyoti Mahanta, Manjil P. Saikia
Publikováno v:
Pankaj Jyoti Mahanta
Let $p_{o}(n)$ (resp. $p_{e}(n)$) denote the number of partitions of $n$ with more odd parts (resp. even parts) than even parts (resp. odd parts). Recently, Kim, Kim, and Lovejoy proved that $p_{o}(n)>p_{e}(n)$ for all $n>2$ and conjectured that $d_{
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fa348ca2800573c46b56cbe7b6783e06
https://orca.cardiff.ac.uk/id/eprint/148447/1/parity_Final.pdf
https://orca.cardiff.ac.uk/id/eprint/148447/1/parity_Final.pdf