Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Kousik Dhara"'
Autor:
Kousik Dhara, Harry Dym
Publikováno v:
Integral Equations and Operator Theory. 94
Let $\Omega_+$ be either the open unit disc or the open upper half plane or the open right half plane. In this paper, we compute the norm of the basic operator $A_\alpha=\Pi_\Theta T_{b_\alpha}|_{\mathcal{H}(\Theta)}$ in the vector valued model space
Publikováno v:
Linear Algebra and its Applications. 622:150-165
We study idempotent, model, and Toeplitz operators that attain the norm. Notably, we prove that if $\mathcal{Q}$ is a backward shift invariant subspace of the Hardy space $H^2(\mathbb{D})$, then the model operator $S_{\mathcal{Q}}$ attains its norm.
Autor:
Kousik Dhara, Santhosh Kumar Pamula
For a bounded quaternionic operator $T$ on a right quaternionic Hilbert space $\mathcal{H}$ and $\varepsilon >0$, the pseudo $S$-spectrum of $T$ is defined as \begin{align*} \Lambda_{\varepsilon}^{S}(T) := \sigma_S (T) \bigcup \left \{ q \in \mathbb{
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f1e35e89202be72d24aea82e6c6defcf
http://arxiv.org/abs/2206.11513
http://arxiv.org/abs/2206.11513
Publikováno v:
Journal of Functional Analysis. 284:109834
Let $H^\infty$ denote the Banach algebra of all bounded analytic functions on the open unit disc and denote by $\mathscr{B}(H^\infty)$ the Banach space of all bounded linear operators from $H^\infty$ to itself. We prove that the Bishop-Phelps-Bollob
Autor:
Kousik Dhara, S. H. Kulkarni
Publikováno v:
Advances in Operator Theory. 5:248-260
Let A be a complex Banach algebra with unit. For an integer $$n\ge 0$$ and $$\epsilon >0$$, the $$(n,\epsilon )$$-pseudospectrum of $$a\in A$$ is defined by $$\begin{aligned} \varLambda _{n,\epsilon } (A,a):=\left\{ \lambda \in \mathbb {C}: (\lambda
Autor:
S.H. Kulkarni, Kousik Dhara
Publikováno v:
Journal of Mathematical Analysis and Applications. 464:939-954
Let A be a complex unital Banach algebra, a ∈ A , n ∈ Z + and ϵ > 0 . The ( n , ϵ ) -pseudospectrum Λ n , ϵ ( a ) of a is defined as Λ n , ϵ ( a ) : = σ ( a ) ∪ { λ ∉ σ ( a ) : ‖ ( λ − a ) − 2 n ‖ 1 / 2 n ≥ 1 ϵ } . Here
Publikováno v:
Integral Equations and Operator Theory. 91
Let $$\epsilon >0$$ , n a non-negative integer, and A a complex unital Banach algebra. Define $$\gamma _n: A\times {\mathbb {C}}\rightarrow [0,\infty ]$$ by $$\begin{aligned} \gamma _n(a,z)={\left\{ \begin{array}{ll} \Vert (z -a)^{-2^n}\Vert ^{-1/2^n
Publikováno v:
International Journal of Computing Science and Mathematics. 14:196
In this study, we have explained a constrained travelling salesman problem (TSP) where total travelling cost must maintain a maximum level. The objective of this proposed TSP is to minimise the tot...