Zobrazeno 1 - 10
of 37
pro vyhledávání: '"Kouno, Takafumi"'
Autor:
Kouno, Takafumi, Naito, Satoshi
We give a Borel-type presentation of the torus-equivariant (small) quantum $K$-ring of flag manifolds of type $C$.
Comment: 40 pages
Comment: 40 pages
Externí odkaz:
http://arxiv.org/abs/2410.10575
We study Schubert calculus in the torus-equivariant quantum $K$-ring of the Lagrangian Grassmannian $\mathrm{LG}(n)$. Our main tool is the $K$-theoretic Peterson map due to Kato. The map is from the (localized) equivariant $K$-homology ring $K_{*}^{T
Externí odkaz:
http://arxiv.org/abs/2405.17854
Autor:
Kouno, Takafumi, Naito, Satoshi
We construct an injective weight-preserving map (called the forgetful map) from the set of all admissible subsets in the quantum alcove model associated to an arbitrary weight. The image of this forgetful map can be explicitly described by introducin
Externí odkaz:
http://arxiv.org/abs/2403.04560
We provide identities of inverse Chevalley type for the graded characters of level-zero Demazure submodules of extremal weight modules over a quantum affine algebra of type $C$. These identities express the product $e^{\mu} \, \mathrm{gch} \, V_{x}^{
Externí odkaz:
http://arxiv.org/abs/2209.00255
Autor:
Kouno, Takafumi, Lenart, Cristian, Naito, Satoshi, Sagaki, Daisuke, Kouno, with an Appendix by Takafumi, Xu, Weihong
We derive cancellation-free Chevalley-type multiplication formulas in the T-equivariant quantum K-theory of Grassmannians of type A and C, and also those of two-step flag manifolds of type A. They are obtained based on the uniform Chevalley formula i
Externí odkaz:
http://arxiv.org/abs/2109.11596
Publikováno v:
In Journal of Algebra 1 May 2024 645:1-53
The quantum alcove model associated to a dominant weight plays an important role in many branches of mathematics, such as combinatorial representation theory, the theory of Macdonald polynomials, and Schubert calculus. For a dominant weight, it is pr
Externí odkaz:
http://arxiv.org/abs/2105.02546
We prove an explicit inverse Chevalley formula in the equivariant $K$-theory of semi-infinite flag manifolds of simply-laced type. By an inverse Chevalley formula, we mean a formula for the product of an equivariant scalar with a Schubert class, expr
Externí odkaz:
http://arxiv.org/abs/2008.10483
In this paper, we give an explicit formula of Chevalley type, in terms of the Bruhat graph, for the quantum multiplication with the class of the line bundle associated to the anti-dominant minuscule fundamental weight $- \varpi_{k}$ in the torus-equi
Externí odkaz:
http://arxiv.org/abs/2003.14130
Autor:
Kouno, Takafumi
A Demazure crystal is the basis at $q=0$ of a Demazure module. Demazure crystals play an important role in Schubert calculus because the character of a Demazure crystal in type A is identical to a key polynomial, which is closely related to Schubert
Externí odkaz:
http://arxiv.org/abs/1805.00351