Zobrazeno 1 - 10
of 28
pro vyhledávání: '"Kotrbčík, Michal"'
Online graph problems are considered in models where the irrevocability requirement is relaxed. Motivated by practical examples where, for example, there is a cost associated with building a facility and no extra cost associated with doing it later,
Externí odkaz:
http://arxiv.org/abs/1704.08835
This paper is devoted to the online dominating set problem and its variants. We believe the paper represents the first systematic study of the effect of two limitations of online algorithms: making irrevocable decisions while not knowing the future,
Externí odkaz:
http://arxiv.org/abs/1604.05172
Autor:
Eiben, Eduard, Kotrbcik, Michal
A graph is equimatchable if each of its matchings is a subset of a maximum matching. It is known that any 2-connected equimatchable graph is either bipartite, or factor-critical, and that these two classes are disjoint. This paper provides a descript
Externí odkaz:
http://arxiv.org/abs/1501.07549
Autor:
Kotrbcik, Michal, Skoviera, Martin
The maximum genus $\gamma_M(G)$ of a graph G is the largest genus of an orientable surface into which G has a cellular embedding. Combinatorially, it coincides with the maximum number of disjoint pairs of adjacent edges of G whose removal results in
Externí odkaz:
http://arxiv.org/abs/1501.07460
We derive a quadratic-time algorithm for the genus distribution of any 3-regular, biconnected series-parallel graph, which we extend to any biconnected series-parallel graph of maximum degree at most 3. Since the biconnected components of every graph
Externí odkaz:
http://arxiv.org/abs/1407.8031
Autor:
Eiben, Eduard, Kotrbčík, Michal
A graph $G$ is equimatchable if any matching in $G$ is a subset of a maximum-size matching. It is known that any $2$-connected equimatchable graph is either bipartite or factor-critical. We prove that for any vertex $v$ of a $2$-connected factor-crit
Externí odkaz:
http://arxiv.org/abs/1312.3423
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Kotrbčík, Michal1, Matsumoto, Naoki2 naoki-matsumoto@st.seikei.ac.jp, Mohar, Bojan3, Nakamoto, Atsuhiro4, Noguchi, Kenta5, Ozeki, Kenta4, Vodopivec, Andrej6
Publikováno v:
Journal of Graph Theory. Apr2018, Vol. 87 Issue 4, p475-491. 17p.
Autor:
Eiben, Eduard1 eduard.eiben@tuwien.ac.at, Kotrbčík, Michal2 kotrbcik@dcs.fmph.uniba.sk
Publikováno v:
Journal of Graph Theory. Jan2016, Vol. 81 Issue 1, p35-49. 15p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.