Zobrazeno 1 - 10
of 138
pro vyhledávání: '"Kotov, Alexei A."'
Following recent results of A.K. and V.S. on $\mathbb Z$-graded manifolds, we give several local and global normal forms results for $Q$-structures on those, i.e. for differential graded manifolds. In particular, we explain in which sense their relev
Externí odkaz:
http://arxiv.org/abs/2212.05579
Autor:
Kotov, Alexei, Salnikov, Vladimir
In this paper we address several algebraic constructions in the context of groupoids, algebroids and $\mathbb Z$-graded manifolds. We generalize the results of integration of $\mathbb N$-graded Lie algebras to the honest $\mathbb Z$-graded case and p
Externí odkaz:
http://arxiv.org/abs/2207.07083
Autor:
Kotov, Alexei A.1,2 (AUTHOR) ilkombarov9192@gmail.com, Adashev, Vladimir E.1,2 (AUTHOR) adashev.vladimir@gmail.com, Kombarov, Ilia A.2 (AUTHOR), Bazylev, Sergei S.1,2 (AUTHOR) bazylevser@gmail.com, Shatskikh, Aleksei S.2 (AUTHOR), Olenina, Ludmila V.1,2 (AUTHOR) olenina_ludmila@mail.ru
Publikováno v:
International Journal of Molecular Sciences. Jun2024, Vol. 25 Issue 11, p5681. 26p.
Publikováno v:
Math. Mech. Compl. Sys. 11 (2023) 1-18
We discuss the notion of basic cohomology for Dirac structures and, more generally, Lie algebroids. We then use this notion to characterize the obstruction to a variational formulation of Dirac dynamics.
Externí odkaz:
http://arxiv.org/abs/2109.00313
Autor:
Kotov, Alexei, Salnikov, Vladimir
In this paper we discuss the categorical properties of $\mathbb{Z}$-graded manifolds. We start by describing the local model paying special attention to the differences in comparison to the $\mathbb{N}$-graded case. In particular we explain the origi
Externí odkaz:
http://arxiv.org/abs/2108.13496
Autor:
Kotov, Alexei, Salnikov, Vladimir
Publikováno v:
In Differential Geometry and its Applications April 2024 93
Autor:
Grigoriev, Maxim, Kotov, Alexei
Any local gauge theory can be represented as an AKSZ sigma model (upon parameterization if necessary). However, for non-topological models in dimension higher than 1 the target space is necessarily infinite-dimensional. The interesting alternative kn
Externí odkaz:
http://arxiv.org/abs/2008.11690
Autor:
Kotov, Alexei, Salnikov, Vladimir
Publikováno v:
In Journal of Geometry and Physics September 2023 191
Publikováno v:
In Journal of Geometry and Physics September 2023 191
In this paper we discuss the question of integrating differential graded Lie algebras (DGLA) to differential graded Lie groups (DGLG). We first recall the classical problem of integration in the context, and present the construction for (non-graded)
Externí odkaz:
http://arxiv.org/abs/1906.09630