Zobrazeno 1 - 10
of 42
pro vyhledávání: '"Kotorii, Yuka"'
Autor:
Kotorii, Yuka, Mizusawa, Atsuhiko
Two links are called link-homotopic if they are transformed to each other by a sequence of self-crossing changes and ambient isotopies. The notion of link-homotopy is generalized to spatial graphs and it is called component-homotopy. The link-homotop
Externí odkaz:
http://arxiv.org/abs/2312.12822
Autor:
Kotorii, Yuka, Mizusawa, Atsuhiko
Habegger and Lin gave a classification of the link-hmotopy classes of links as the link-homotopy classes of string links modulo the actions of conjugations and partial conjugations for string links. In this paper, we calculated the actions of the par
Externí odkaz:
http://arxiv.org/abs/2212.14502
Autor:
Habiro, Kazuo, Kotorii, Yuka
We define notions of pivotal and ribbon objects in a monoidal category. These constructions give pivotal or ribbon monoidal categories from a monoidal category which is not necessarily with duals. We apply this construction to the braided monoidal ca
Externí odkaz:
http://arxiv.org/abs/2204.02551
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Kotorii, Yuka, Mizusawa, Atsuhiko
Two links are link-homotopic if they are transformed into each other by a sequence of self-crossing changes and ambient isotopies. The link-homotopy classes of 4-component links were classified by Levine with enormous algebraic computations. We modif
Externí odkaz:
http://arxiv.org/abs/1910.08653
Publikováno v:
J. Knot Theory Ramifications 31 (2022), Paper No.2250019, 37pp
Although it is known that the dimension of the Vassiliev invariants of degree three of long virtual knots is seven, the complete list of seven distinct Gauss diagram formulas have been unknown explicitly, where only one known formula was revised with
Externí odkaz:
http://arxiv.org/abs/1905.01418
Autor:
Kotorii, Yuka
In the context of finite type invariants, Stanford introduced a family of equivalence relations on knots defined by the lower central series of the pure braid groups and characterized the finite type invariants in terms of the structure of the braid
Externí odkaz:
http://arxiv.org/abs/1705.10490
Autor:
Kotorii, Yuka, Mizusawa, Atsuhiko
A handlebody-link is a disjoint union of embeddings of handlebodies in $S^3$ and an HL-homotopy is an equivalence relation on handlebody-links generated by self-crossing changes. The second author and Ryo Nikkuni classified the set of HL-homotopy cla
Externí odkaz:
http://arxiv.org/abs/1603.09067
Autor:
Kotorii, Yuka
Polyak showed that any Milnor's $\overline{\mu}$-invariant of length 3 can be represented as a combination of Conway polynomials of knots obtained by certain band sum of the link components. On the other hand, Habegger and Lin showed that Milnor inva
Externí odkaz:
http://arxiv.org/abs/1503.08026
Autor:
Kotorii, Yuka, Yasuhara, Akira
J.-B. Meilhan and the second author showed that any Milnor $\bar{\mu}$-invariant of length between 3 and $2k+1$ can be represented as a combination of HOMFLYPT polynomial of knots obtained by certain band sum of the link components, if all $\bar{\mu}
Externí odkaz:
http://arxiv.org/abs/1304.1870