Zobrazeno 1 - 10
of 112
pro vyhledávání: '"Kostrykin, V."'
Publikováno v:
J.Phys.A30:8599-8610,1997
We continue our investigation concerning the question of whether atomic bound states begin to stabilize in the ultra-intense field limit. The pulses considered are essentially arbitrary, but we distinguish between three situations. First the total cl
Externí odkaz:
http://arxiv.org/abs/quant-ph/9707059
Publikováno v:
J.Phys. B29 (1996) 5651
We address the question of whether atomic bound states begin to stabilize in the short ultra-intense field limit. We provide a general theory of ionization probability and investigate its gauge invariance. For a wide range of potentials we find an up
Externí odkaz:
http://arxiv.org/abs/quant-ph/9604009
Publikováno v:
Steel in Translation; Mar2023, Vol. 53 Issue 3, p210-214, 5p
We consider the problem of variation of spectral subspaces for linear self-adjoint operators with emphasis on the case of off-diagonal perturbations. We prove a number of new optimal results on the shift of the spectrum and obtain (sharp) estimates o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______610::21acb0a641de5b1af40e60ad3d311321
https://publica.fraunhofer.de/handle/publica/213127
https://publica.fraunhofer.de/handle/publica/213127
Let A and C be self-adjoint operators such that the spectrum of A lies in a gap of the spectrum of C and let d > 0 be the distance between the spectra of A and C. Under these assumptions we prove that the best possible value of the constant c in the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______610::23abe3bea3fc25432063e444e3fe42ce
https://publica.fraunhofer.de/handle/publica/209700
https://publica.fraunhofer.de/handle/publica/209700
We discuss the problem of perturbation of spectral subspaces for linear self-adjoint operators on a separable Hilbert space. Let A and V be bounded self-adjoint operators. Assume that the spectrum of A consists of two disjoint parts sigma and Sigma s
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______610::3d8749eac4613cb61744e04bb0f48287
https://publica.fraunhofer.de/handle/publica/203381
https://publica.fraunhofer.de/handle/publica/203381