Zobrazeno 1 - 10
of 137
pro vyhledávání: '"Kostant, Bertram"'
Autor:
Kostant, Bertram
I connect an old result of mine on a Lie algebra generalization of the Amitsur-Levitski theorem with equations for sheets in a reductive Lie algebra and with recent results of Kostant-Wallach on the variety of singular elements in a reductive Lie alg
Externí odkaz:
http://arxiv.org/abs/1309.7076
Autor:
Kostant, Bertram
Let $G$ be a complex simply-connected semisimple Lie group and let $\frak{g}= Lie G$. Let $\frak{g} = \frak{n}_- +\frak{h} + \frak{n}$ be a triangular decomposition of $\frak{g}$. One readily has that $Cent\,U({\frak n})$ is isomorphic to the ring $S
Externí odkaz:
http://arxiv.org/abs/1205.2362
Autor:
Kostant, Bertram
Let $G$ be a complex simply-connected semisimple Lie group and let $\frak{g}= Lie G$. Let $\frak{g} = \frak{n}_- +\frak{h} + \frak{n}$ be a triangular decomposition of $\frak{g}$. One readily has that $Cent\,U({\frak n})$ is isomorphic to the ring $S
Externí odkaz:
http://arxiv.org/abs/1205.2017
Autor:
Kostant, Bertram
Let $G$ be a complex simply-connected semisimple Lie group and let $\g=\hbox{\rm Lie}\,G$. Let $\g = \n_- +\hh + \n$ be a triangular decomposition of $\g$. One readily has that $\hbox{\rm Cent}\,U(\n)$ is isomorphic to the ring $S(\n)^{\n}$ of symmet
Externí odkaz:
http://arxiv.org/abs/1201.4494
Autor:
Kostant, Bertram, Wallach, Nolan
The representation of the conformal group (PSU(2,2)) on the space of solutions to Maxwell's equations on the conformal compactification of Minkowski space is shown to break up into four irreducible unitarizable smooth Fr\'echet representations of mod
Externí odkaz:
http://arxiv.org/abs/1109.5745
Autor:
Kostant, Bertram
Let $G$ be a semisimple Lie group and let $\g =\n_- +\hh +\n$ be a triangular decomposition of $\g= \hbox{Lie}\,G$. Let $\b =\hh +\n$ and let $H,N,B$ be Lie subgroups of $G$ corresponding respectively to $\hh,\n$ and $\b$. We may identify $\n_-$ with
Externí odkaz:
http://arxiv.org/abs/1101.5382
Autor:
Kostant, Bertram
Let $G$ be a complex simply-connected semisimple Lie group and let $\g= \hbox{\rm Lie}\,G$. Let $\g = \n_- +\hh + \n$ be a triangular decomposition of $\g$. The authors in [LW] introduce a very nice representation theory idea for the construction of
Externí odkaz:
http://arxiv.org/abs/1101.2459
Autor:
Kostant, Bertram, Wallach, Nolan
Let $G$ be a complex simple Lie group and let $\g = \hbox{\rm Lie}\,G$. Let $S(\g)$ be the $G$-module of polynomial functions on $\g$ and let $\hbox{\rm Sing}\,\g$ be the closed algebraic cone of singular elements in $\g$. Let ${\cal L}\s S(\g)$ be t
Externí odkaz:
http://arxiv.org/abs/1011.3267
Autor:
Kostant, Bertram
A recent experimental discovery involving the spin structure of electrons in a cold one-dimensional magnet points to a validation of a Zamolodchikov model involving the exceptional Lie group $E_8$. The model predicts 8 particles and predicts the rati
Externí odkaz:
http://arxiv.org/abs/1003.0046