Zobrazeno 1 - 10
of 73
pro vyhledávání: '"Kosloff, Zemer"'
Autor:
Kosloff, Zemer, Sanadhya, Shrey
We show that for every ergodic and aperiodic probability preserving system $(X,\mathcal{B},m,T)$, there exists $f:X\to \mathbb{Z}^d$, whose corresponding cocycle satisfies the $d$-dimensional local central limit theorem. We use the $2$-dimensional re
Externí odkaz:
http://arxiv.org/abs/2409.05087
Autor:
Kosloff, Zemer, Volný, Dalibor
We show that alpha stable L\'evy motions can be simulated by any ergodic and aperiodic probability preserving transformation. Namely we show: - for $0<\alpha<1$ and every $\alpha$ stable L\'evy motion $\mathbb{W}$, there exists a function f whose par
Externí odkaz:
http://arxiv.org/abs/2309.05753
Autor:
Kosloff, Zemer, Volny, Dalibor
We show that for every ergodic and aperiodic probability preserving transformation and $\alpha\in (0,2)$ there exists a function whose associated time series is in the standard domain of attraction of a non-degenerate symmetric $\alpha$-stable distri
Externí odkaz:
http://arxiv.org/abs/2211.03448
Autor:
Kosloff, Zemer, Soo, Terry
Publikováno v:
J. Mod. Dyn., 20:597-634, 2024
We show that a totally dissipative system has all nonsingular systems as factors, but that this is no longer true when the factor maps are required to be finitary. In particular, if a nonsingular Bernoulli shift satisfies the Doeblin condition, and h
Externí odkaz:
http://arxiv.org/abs/2111.14497
Autor:
Kosloff, Zemer, Soo, Terry
We give elementary constructions of factors of nonsingular Bernoulli shifts. In particular, we show that all nonsingular Bernoulli shifts on a finite number of symbols which satisfy the Doeblin condition have a factor that is equivalent to an indepen
Externí odkaz:
http://arxiv.org/abs/2010.04636
Given an infinite countable discrete amenable group $\Gamma$, we construct explicitly sharply weak mixing nonsingular Poisson $\Gamma$-actions of each Krieger's type: $III_\lambda$, for $\lambda\in[0,1]$, and $II_\infty$. The result is new even for $
Externí odkaz:
http://arxiv.org/abs/2010.00405
Publikováno v:
Ann. Inst. H. Poincare (B) Probab. Statist. 58 (2022) 1305-1327
We consider deterministic homogenization (convergence to a stochastic differential equation) for multiscale systems of the form \[ x_{k+1} = x_k + n^{-1} a_n(x_k,y_k) + n^{-1/2} b_n(x_k,y_k), \quad y_{k+1} = T_n y_k, \] where the fast dynamics is giv
Externí odkaz:
http://arxiv.org/abs/2006.11422
Autor:
Kosloff, Zemer, Soo, Terry
Given a countable amenable group G and 0 < L < 1, we give an elementary construction of a type-III:L Bernoulli group action. In the case where G is the integers, we show that our nonsingular Bernoulli shifts have independent and identically distribut
Externí odkaz:
http://arxiv.org/abs/2005.02812
It is shown that for a dense $G_\delta$-subset of the subgroup of nonsingular transformations (of a standard infinite $\sigma$-finite measure space) whose Poisson suspensions are nonsingular, the corresponding Poisson suspensions are ergodic and of K
Externí odkaz:
http://arxiv.org/abs/2002.05094
The classical Poisson functor associates to every infinite measure preserving dynamical system $(X,\mu,T)$ a probability preserving dynamical system $(X^*,\mu^*,T_*)$ called the Poisson suspension of $T$. In this paper we generalize this construction
Externí odkaz:
http://arxiv.org/abs/2002.02207