Zobrazeno 1 - 10
of 76
pro vyhledávání: '"Kosakowska, Justyna"'
In his 1934 paper, G.Birkhoff poses the problem of classifying pairs $(G,U)$, where $G$ is an abelian group and $U\subset G$ a subgroup, up to automorphisms of $G$. In general, Birkhoff's Problem is not considered feasible. In this note, we fix a pri
Externí odkaz:
http://arxiv.org/abs/2312.01451
Autor:
Kaniecki, Mariusz, Kosakowska, Justyna
In the paper we investigate two partial orders on standard Young tableaux and show their applications in the theory of invariant subspaces of nilpotent linear operators.
Comment: 29 pages
Comment: 29 pages
Externí odkaz:
http://arxiv.org/abs/2311.04668
Autor:
Kasjan, Stanisław, Kosakowska, Justyna
We prove the existence of Hall polynomials for $x^2$-bounded invariant subspaces of nilpotent linear operators.
Externí odkaz:
http://arxiv.org/abs/2012.12744
Like the LR-tableau, a socle tableau is given as a skew diagram with certain entries. Unlike in the LR-tableau, the entries in the socle tableau are weakly increasing in each row, strictly increasing in each column and satisfy a modified lattice perm
Externí odkaz:
http://arxiv.org/abs/2007.12221
Autor:
Kaniecki, Mariusz, Kosakowska, Justyna
In the paper we investigate an algorithmic associative binary operation $*$ on the set $\mathcal{LR}_1$ of Littlewood-Richardson tableaux with entries equal to one. We extend $*$ to an algorithmic nonassociative binary operation on the set $\mathcal{
Externí odkaz:
http://arxiv.org/abs/2004.10602
In this paper we generalize Kaplansky's combinatorial characterization of the isomorphism types of embeddings of a cyclic subgroup in a finite abelian group given in his 1951 book ``Infinite Abelian Groups''. For this we introduce partial maps on Lit
Externí odkaz:
http://arxiv.org/abs/1905.05688
Autor:
Kaniecki, Mariusz, Kosakowska, Justyna
The main aim of the paper is to present a~combinatorial algorithm that, applying Littlewood-Richardson tableaux with entries equal to $1$, computes generic extensions of semisimple invariant subspaces of nilpotent linear operators. Moreover, we discu
Externí odkaz:
http://arxiv.org/abs/1811.05236
Autor:
Kasjan, Stanisław, Kosakowska, Justyna
Publikováno v:
In Journal of Pure and Applied Algebra May 2022 226(5)
Publikováno v:
Communications in Algebra 46 (2018), 2243-2263
For a partition $\beta$, denote by $N_\beta$ the nilpotent linear operator of Jordan type $\beta$. Given partitions $\beta$, $\gamma$, we investigate the representation space ${}_2{\mathbb V}_{\gamma}^\beta$ of all short exact sequences $$ \mathcal E
Externí odkaz:
http://arxiv.org/abs/1609.09042
Publikováno v:
Journal of Algebra 491 (2017), 241-264
In his 1951 book "Infinite Abelian Groups", Kaplansky gives a combinatorial characterization of the isomorphism types of embeddings of a cyclic subgroup in a finite abelian group. In this paper we first use partial maps on Littlewood-Richardson table
Externí odkaz:
http://arxiv.org/abs/1607.05640