Zobrazeno 1 - 10
of 95
pro vyhledávání: '"Korepanov Alexey"'
Autor:
Korepanov Alexey, Golovko Olga
Publikováno v:
BIO Web of Conferences, Vol 116, p 02007 (2024)
The work is aimed at studing dynamics of the latent time of motor reaction in conditions of noise interference in adolescents. The result of research of latent time of impellent reaction and force of nervous processes (under the tepping-test) at teen
Externí odkaz:
https://doaj.org/article/eb8ac0109ebe464b85a1433b2eaeac2a
We consider deterministic fast-slow dynamical systems of the form \[ x_{k+1}^{(n)} = x_k^{(n)} + n^{-1} A(x_k^{(n)}) + n^{-1/\alpha} B(x_k^{(n)}) v(y_k), \quad y_{k+1} = Ty_k, \] where $\alpha\in(1,2)$ and $x_k^{(n)}\in{\mathbb R}^m$. Here, $T$ is a
Externí odkaz:
http://arxiv.org/abs/2312.15734
Autor:
Bahsoun, Wael, Korepanov, Alexey
We study infinite systems of mean field weakly coupled intermittent maps in the Pomeau-Manneville scenario. We prove that the coupled system admits a unique ``physical'' stationary state, to which all absolutely continuous states converge. Moreover,
Externí odkaz:
http://arxiv.org/abs/2303.05311
Publikováno v:
SHS Web of Conferences, Vol 55, p 03023 (2018)
The work of the seaman is characterized by isolation from the land, high probability of emergency, implementation of professional duties in extreme conditions. Life of the crew and safety of the vessel depend on the accuracy of seamen’s actions tha
Externí odkaz:
https://doaj.org/article/c5100b5b788f4532b8d0abfcb33a7c74
Autor:
Demers, Mark F., Korepanov, Alexey
In a recent work, Baladi and Demers constructed a measure of maximal entropy for finite horizon dispersing billiard maps and proved that it is unique, mixing and moreover Bernoulli. We show that this measure enjoys natural probabilistic properties fo
Externí odkaz:
http://arxiv.org/abs/2204.04684
Autor:
Korepanov, Alexey, Leppänen, Juho
We study nonstationary intermittent dynamical systems, such as compositions of a (deterministic) sequence of Pomeau-Manneville maps. We prove two main results: sharp bounds on memory loss, including the "unexpected" faster rate for a large class of m
Externí odkaz:
http://arxiv.org/abs/2007.07616
Publikováno v:
Ann. Inst. H. Poincare (B) Probab. Statist. 58 (2022) 1305-1327
We consider deterministic homogenization (convergence to a stochastic differential equation) for multiscale systems of the form \[ x_{k+1} = x_k + n^{-1} a_n(x_k,y_k) + n^{-1/2} b_n(x_k,y_k), \quad y_{k+1} = T_n y_k, \] where the fast dynamics is giv
Externí odkaz:
http://arxiv.org/abs/2006.11422
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Probability Theory and Related Fields (2020) 178(3), 735-770
We consider deterministic fast-slow dynamical systems on $\mathbb{R}^m\times Y$ of the form \[ \begin{cases} x_{k+1}^{(n)} = x_k^{(n)} + n^{-1} a(x_k^{(n)}) + n^{-1/\alpha} b(x_k^{(n)}) v(y_k)\;,\quad y_{k+1} = f(y_k)\;, \end{cases} \] where $\alpha\
Externí odkaz:
http://arxiv.org/abs/1907.04825
Publikováno v:
Ann. Inst. H. Poincare (B) Probab. Statist. 58 (2022) 1328-1350
We consider deterministic homogenization for discrete-time fast-slow systems of the form $$ X_{k+1} = X_k + n^{-1}a_n(X_k,Y_k) + n^{-1/2}b_n(X_k,Y_k)\;, \quad Y_{k+1} = T_nY_k\;$$ and give conditions under which the dynamics of the slow equations con
Externí odkaz:
http://arxiv.org/abs/1903.10418