Zobrazeno 1 - 10
of 87
pro vyhledávání: '"Korepanov Alexey"'
We consider deterministic fast-slow dynamical systems of the form \[ x_{k+1}^{(n)} = x_k^{(n)} + n^{-1} A(x_k^{(n)}) + n^{-1/\alpha} B(x_k^{(n)}) v(y_k), \quad y_{k+1} = Ty_k, \] where $\alpha\in(1,2)$ and $x_k^{(n)}\in{\mathbb R}^m$. Here, $T$ is a
Externí odkaz:
http://arxiv.org/abs/2312.15734
Autor:
Bahsoun, Wael, Korepanov, Alexey
We study infinite systems of mean field weakly coupled intermittent maps in the Pomeau-Manneville scenario. We prove that the coupled system admits a unique ``physical'' stationary state, to which all absolutely continuous states converge. Moreover,
Externí odkaz:
http://arxiv.org/abs/2303.05311
Autor:
Demers, Mark F., Korepanov, Alexey
In a recent work, Baladi and Demers constructed a measure of maximal entropy for finite horizon dispersing billiard maps and proved that it is unique, mixing and moreover Bernoulli. We show that this measure enjoys natural probabilistic properties fo
Externí odkaz:
http://arxiv.org/abs/2204.04684
Autor:
Korepanov, Alexey, Leppänen, Juho
We study nonstationary intermittent dynamical systems, such as compositions of a (deterministic) sequence of Pomeau-Manneville maps. We prove two main results: sharp bounds on memory loss, including the "unexpected" faster rate for a large class of m
Externí odkaz:
http://arxiv.org/abs/2007.07616
Publikováno v:
Ann. Inst. H. Poincare (B) Probab. Statist. 58 (2022) 1305-1327
We consider deterministic homogenization (convergence to a stochastic differential equation) for multiscale systems of the form \[ x_{k+1} = x_k + n^{-1} a_n(x_k,y_k) + n^{-1/2} b_n(x_k,y_k), \quad y_{k+1} = T_n y_k, \] where the fast dynamics is giv
Externí odkaz:
http://arxiv.org/abs/2006.11422
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Probability Theory and Related Fields (2020) 178(3), 735-770
We consider deterministic fast-slow dynamical systems on $\mathbb{R}^m\times Y$ of the form \[ \begin{cases} x_{k+1}^{(n)} = x_k^{(n)} + n^{-1} a(x_k^{(n)}) + n^{-1/\alpha} b(x_k^{(n)}) v(y_k)\;,\quad y_{k+1} = f(y_k)\;, \end{cases} \] where $\alpha\
Externí odkaz:
http://arxiv.org/abs/1907.04825
Publikováno v:
Ann. Inst. H. Poincare (B) Probab. Statist. 58 (2022) 1328-1350
We consider deterministic homogenization for discrete-time fast-slow systems of the form $$ X_{k+1} = X_k + n^{-1}a_n(X_k,Y_k) + n^{-1/2}b_n(X_k,Y_k)\;, \quad Y_{k+1} = T_nY_k\;$$ and give conditions under which the dynamics of the slow equations con
Externí odkaz:
http://arxiv.org/abs/1903.10418
Autor:
Korepanov Alexey, Golovko Olga
Publikováno v:
BIO Web of Conferences, Vol 116, p 02007 (2024)
The work is aimed at studing dynamics of the latent time of motor reaction in conditions of noise interference in adolescents. The result of research of latent time of impellent reaction and force of nervous processes (under the tepping-test) at teen
Externí odkaz:
https://doaj.org/article/eb8ac0109ebe464b85a1433b2eaeac2a
Publikováno v:
Nonlinearity 32 2055 (2019)
We investigate a dynamical system consisting of $N$ particles moving on a $d$-dimensional torus under the action of an electric field $E$ with a Gaussian thermostat to keep the total energy constant. The particles are also subject to stochastic colli
Externí odkaz:
http://arxiv.org/abs/1809.00016