Zobrazeno 1 - 10
of 13
pro vyhledávání: '"Kordan N. Ospanov"'
Autor:
Kordan N. Ospanov
Publikováno v:
Boundary Value Problems, Vol 2023, Iss 1, Pp 1-11 (2023)
Abstract We studied one class of second-order elliptic equations with intermediate coefficient and proved that the semi-periodic problem on a strip is unique solvable in Hilbert space. We assume that the intermediate coefficient of the equation is co
Externí odkaz:
https://doaj.org/article/616eea91fe9946a09444a7f0562af77a
Autor:
Kordan N. Ospanov
Publikováno v:
Boundary Value Problems, Vol 2021, Iss 1, Pp 1-12 (2021)
Abstract We give some sufficient conditions for the existence and uniqueness of the solution of a higher-order linear differential equation with unbounded coefficients in the Hilbert space. We obtain some estimates for the weighted norms of the solut
Externí odkaz:
https://doaj.org/article/4d9e43a7617742d093b7409c84a7a9d3
Autor:
Turdebek N. Bekjan, Kordan N. Ospanov
Publikováno v:
Linear Algebra and its Applications. 664:147-164
Publikováno v:
Journal of Function Spaces, Vol 2015 (2015)
We prove the Choi-Davis-Jensen type submajorization inequalities on semifinite von Neumann algebras for concave functions and convex functions.
Externí odkaz:
https://doaj.org/article/696ca034e7fb4def9d32c99d37f39eb0
Autor:
Ospanov, Kordan N.1 (AUTHOR) kordan.ospanov@gmail.com
Publikováno v:
Boundary Value Problems. 4/12/2023, Vol. 2023 Issue 1, p1-11. 11p.
Publikováno v:
Acta Mathematica Scientia; Jan2020, Vol. 40 Issue 1, p245-260, 16p
Publikováno v:
AIP Conference Proceedings; 2016, Vol. 1759 Issue 1, p1-5, 5p
Autor:
Ospanov, Kordan N.
Publikováno v:
AIP Conference Proceedings; 2016, Vol. 1759 Issue 1, p1-4, 4p
Autor:
Ospanov, Kordan N.
Publikováno v:
Complex Variables & Elliptic Equations; Jul2015, Vol. 60 Issue 7, p1005-1014, 10p
This book is a collection of short papers from the 11th International ISAAC Congress 2017 in Växjö, Sweden. The papers, written by the best international experts, are devoted to recent results in mathematics with a focus on analysis. The volume pro