Zobrazeno 1 - 10
of 263
pro vyhledávání: '"Korchmaros, G"'
Let $G$ be a subgroup of the three dimensional projective group $\mathrm{PGL}(3,q)$ defined over a finite field $\mathbb{F}_q$ of order $q$, viewed as a subgroup of $\mathrm{PGL}(3,K)$ where $K$ is an algebraic closure of $\mathbb{F}_q$. For the seve
Externí odkaz:
http://arxiv.org/abs/2202.05765
Autor:
Korchmáros, G., Nagy, G. P.
Publikováno v:
European Journal of Combinatorics 48: pp. 177-185. (2015)
A finite \emph{$k$-net} of order $n$ is an incidence structure consisting of $k\ge 3$ pairwise disjoint classes of lines, each of size $n$, such that every point incident with two lines from distinct classes is incident with exactly one line from eac
Externí odkaz:
http://arxiv.org/abs/1601.08009
We investigate $k$-nets with $k\geq 4$ embedded in the projective plane $PG(2,\mathbb{K})$ defined over a field $\mathbb{K}$; they are line configurations in $PG(2,\mathbb{K})$ consisting of $k$ pairwise disjoint line-sets, called components, such th
Externí odkaz:
http://arxiv.org/abs/1306.5779
Autor:
Giuzzi, L., Korchmáros, G.
Publikováno v:
Discrete Math. 312 (3): 532-535 (2012)
Let $\cU$ be a unital embedded in the Desarguesian projective plane $\PG(2,q^2)$. Write $M$ for the subgroup of $\PGL(3,q^2)$ which preserves $\cU$. We show that $\cU$ is classical if and only if $\cU$ has two distinct points $P,Q$ for which the stab
Externí odkaz:
http://arxiv.org/abs/1009.6109
Publikováno v:
Discrete Math. 310 (22): 3162-3167 (2010)
We present a new construction of non-classical unitals from a classical unital $U$ in $PG(2,q^2)$. The resulting non-classical unitals are B-M unitals. The idea is to find a non-standard model $\Pi$ of $PG(2,q^2)$ with the following three properties:
Externí odkaz:
http://arxiv.org/abs/0810.2233
Publikováno v:
Journal of Algebraic Combinatorics 28: 531-544 (2008)
A lower bound on the minimum degree of the plane algebraic curves containing every point in a large point-set $K$ of the Desarguesian plane $PG(2,q)$ is obtained. The case where $K$ is a maximal $(k,n)$-arc is considered to greater extent.
Comme
Comme
Externí odkaz:
http://arxiv.org/abs/math/0702770
Publikováno v:
Comm. Algebra 28(1) (2000), 4707--4728
We classify, up to isomorphism, maximal curves covered by the Hermitian curve \mathcal H by a prime degree Galois covering. We also compute the genus of maximal curves obtained by the quotient of \mathcal H by several automorphisms groups. Finally we
Externí odkaz:
http://arxiv.org/abs/math/9807166
Publikováno v:
J. Algebra 216 (1999) 56--76
For each proper divisor d of (r^2-r+1), r being a power of a prime, maximal curves over a finite field with r^2 elements covered by the Hermitian curve of genus 1/2((r^2-r+1)/d-1) are constructed.
Comment: 18 pages, Latex2e
Comment: 18 pages, Latex2e
Externí odkaz:
http://arxiv.org/abs/math/9803029
Publikováno v:
Compositio Math. 121(2) (2000), 163--181
The genus of a maximal curve over a finite field with r^2 elements is either g_0=r(r-1)/2 or less than or equal to g_1=(r-1)^2/4. Maximal curves with genus g_0 or g_1 have been characterized up to isomorphism. A natural genus to be studied is g_2=(r-
Externí odkaz:
http://arxiv.org/abs/math/9802113
Publikováno v:
In European Journal of Combinatorics August 2015 48:177-185