Zobrazeno 1 - 10
of 13
pro vyhledávání: '"Konstantinos D. Polyzos"'
Autor:
Manish K. Singh, Konstantinos D. Polyzos, Panagiotis A. Traganitis, Sairaj V. Dhople, Georgios B. Giannakis
Publikováno v:
ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
Publikováno v:
ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
Autor:
Qin Lu, Konstantinos D. Polyzos
Publikováno v:
ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
Publikováno v:
IEEE Transactions on Signal Processing. 70:17-30
Publikováno v:
2022 56th Asilomar Conference on Signals, Systems, and Computers.
Bayesian optimization (BO) has well-documented merits for optimizing black-box functions with an expensive evaluation cost. Such functions emerge in applications as diverse as hyperparameter tuning, drug discovery, and robotics. BO hinges on a Bayesi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::52194b8caad9a85f7f8905255f00b4dd
Publikováno v:
2021 55th Asilomar Conference on Signals, Systems, and Computers.
Publikováno v:
2021 55th Asilomar Conference on Signals, Systems, and Computers.
Autor:
Dimitrios C. Rodopoulos, Theodore V. Gortsas, Stephanos V. Tsinopoulos, Konstantinos D. Polyzos
Publikováno v:
Engineering Analysis with Boundary Elements. 106:160-169
The majority of the numerical methods applied so far for the simulation of a magnetostatic problem is based either on reduced and total scalar or vector potential formulations. The first one suffers from cancellation errors, the second one from the d
Publikováno v:
ICASSP
Graph-guided semi-supervised learning (SSL) is a major task emerging in a gamut of network science applications. However, most SSL approaches rely on deterministic similarity metrics for prediction, thus providing only point estimates of the sought f