Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Konstantin Merz"'
Publikováno v:
Density Functionals for Many-Particle Systems ISBN: 9789811272141
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::e44cc15f5215cbbeb18b9ddfc8bd82c7
https://doi.org/10.1142/9789811272158_0003
https://doi.org/10.1142/9789811272158_0003
Autor:
Konstantin Merz, Jean-Claude Cuenin
Publikováno v:
Web of Science
We improve results by Frank, Hainzl, Naboko, and Seiringer [12] and Hainzl and Seiringer [20] on the weak coupling limit of eigenvalues for Schr\"odinger-type operators whose kinetic energy vanishes on a codimension one submanifold. The main technica
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9b0923ee54e14fa5a0538d4ebf3c8b3b
http://arxiv.org/abs/2006.07110
http://arxiv.org/abs/2006.07110
Publikováno v:
International Mathematics Research Notices
We consider the fractional Schr\"odinger operator with Hardy potential and critical or subcritical coupling constant. This operator generates a natural scale of homogeneous Sobolev spaces which we compare with the ordinary homogeneous Sobolev spaces.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c17cc9e785c32322d82af65c7b927a77
https://hdl.handle.net/21.11116/0000-0004-DA8E-721.11116/0000-0004-DA90-321.11116/0000-0004-DA91-2
https://hdl.handle.net/21.11116/0000-0004-DA8E-721.11116/0000-0004-DA90-321.11116/0000-0004-DA91-2
Autor:
Konstantin Merz
We consider the fractional Laplacian with Hardy potential and study the scale of homogeneous $L^p$ Sobolev spaces generated by this operator. Besides generalized and reversed Hardy inequalities, the analysis relies on a H\"ormander multiplier theorem
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0effea7bfe6c32fd5fd53fad6c27b860
http://arxiv.org/abs/1904.07614
http://arxiv.org/abs/1904.07614
Autor:
Heinz Siedentop, Konstantin Merz
Publikováno v:
Reports on Mathematical Physics
Web of Science
Web of Science
We consider a large neutral atom of atomic number $Z$, modeled by a pseudo-relativistic Hamiltonian of Chandrasekhar. We study its suitably rescaled one-particle ground state density on the Thomas--Fermi length scale $Z^{-1/3}$. Using an observation
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9d2c872cf4f689824dfa8c09fec50463
http://arxiv.org/abs/1810.00632
http://arxiv.org/abs/1810.00632