Zobrazeno 1 - 10
of 85
pro vyhledávání: '"Kononova, A.V."'
Autor:
Tannemaat, M.R., Kefalas, M., Geraedts, V.J., Remijn-Nelissen, L., Verschuuren, A.J.M., Koch, M., Kononova, A.V., Wang, H., Bäck, T.H.W.
Publikováno v:
In Clinical Neurophysiology February 2023 146:49-54
Autor:
Ullah, S., Wang, H., Menzel, S., Sendhoff, B., Bäck, T.H.W., Rudolph, G., Kononova, A.V., Aguirre, H., Kerschke, P., Ochoa, G., Tušar, T.
Publikováno v:
Lecture notes in computer science (LNCS), 63-75. Cham: Springer
STARTPAGE=63;ENDPAGE=75;TITLE=Lecture notes in computer science (LNCS)
STARTPAGE=63;ENDPAGE=75;TITLE=Lecture notes in computer science (LNCS)
Real-world optimization scenarios under uncertainty and noise are typically handled with robust optimization techniques, which re-formulate the original optimization problem into a robust counterpart, e.g., by taking an average of the function values
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::d9dcbe1dcf8149c0a362d5f0a8db45f9
http://hdl.handle.net/1887/3463877
http://hdl.handle.net/1887/3463877
Optimizing stimulus energy for cochlear implants with a machine learning model of the auditory nerve
Publikováno v:
Hearing Research, 432. ELSEVIER
Performing simulations with a realistic biophysical auditory nerve fiber model can be very time-consuming, due to the complex nature of the calculations involved. Here, a surrogate (approximate) model of such an auditory nerve fiber model was develop
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3e0f982ad1cf454759f4ef6b943619db
http://hdl.handle.net/1887/3607996
http://hdl.handle.net/1887/3607996
Publikováno v:
GECCO '22: Proceedings of the genetic and evolutionary computation conference companion, 2036-2045. ACM
STARTPAGE=2036;ENDPAGE=2045;TITLE=GECCO '22: Proceedings of the genetic and evolutionary computation conference companion
STARTPAGE=2036;ENDPAGE=2045;TITLE=GECCO '22: Proceedings of the genetic and evolutionary computation conference companion
Publikováno v:
GECCO '22: Proceedings of the genetic and evolutionary computation conference companion, 1674-1682. Boston: ACM
STARTPAGE=1674;ENDPAGE=1682;TITLE=GECCO '22: Proceedings of the genetic and evolutionary computation conference companion
STARTPAGE=1674;ENDPAGE=1682;TITLE=GECCO '22: Proceedings of the genetic and evolutionary computation conference companion
The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is a commonly used iterative optimisation heuristic for optimising black-box functions. CMA-ES comes in many flavours with different configuration settings. In this work, we investigate whe
Publikováno v:
2022 14th International conference on computer and automation engineering ICCAE 2022, 127-134. IEEE
STARTPAGE=127;ENDPAGE=134;TITLE=2022 14th International conference on computer and automation engineering ICCAE 2022
STARTPAGE=127;ENDPAGE=134;TITLE=2022 14th International conference on computer and automation engineering ICCAE 2022
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::24c877369002a424a1874028910734dc
http://hdl.handle.net/1887/3505508
http://hdl.handle.net/1887/3505508
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Vermetten, D.L., Stein, B. van, Kononova, A.V., Caraffini, F., Kumar, B.V., Oliva, D., Suganthan, P.N
Publikováno v:
Studies in Computational Intelligence, 1-22. Singapore: Springer
STARTPAGE=1;ENDPAGE=22;TITLE=Studies in Computational Intelligence
Studies in Computational Intelligence ISBN: 9789811680816
STARTPAGE=1;ENDPAGE=22;TITLE=Studies in Computational Intelligence
Studies in Computational Intelligence ISBN: 9789811680816
Differential Evolution is a popular optimisation method with a small number of parameters. However, different hyper-parameters and Differential Evolution variants such as different mutation operators and the F and Cr parameter may introduce structura
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c42429d91104da44ffd7730d7e3256f5
https://doi.org/10.1007/978-981-16-8082-3_1
https://doi.org/10.1007/978-981-16-8082-3_1
Publikováno v:
GECCO Companion
GECCO '21: Proceedings of the Genetic and Evolutionary Computation Conference, 1199-1207. New York, U.S.A.: ACM
STARTPAGE=1199;ENDPAGE=1207;TITLE=GECCO '21: Proceedings of the Genetic and Evolutionary Computation Conference
GECCO '21: Proceedings of the Genetic and Evolutionary Computation Conference, 1199-1207. New York, U.S.A.: ACM
STARTPAGE=1199;ENDPAGE=1207;TITLE=GECCO '21: Proceedings of the Genetic and Evolutionary Computation Conference
Constraint handling is one of the most influential aspects of applying metaheuristics to real-world applications, which can hamper the search progress if treated improperly. In this work, we focus on a particular case - the box constraints, for which
Publikováno v:
GECCO Companion
GECCO'21: Proceedings of the Genetic and Evolutionary Computation Conference Companion, 1596-1604. ACM
STARTPAGE=1596;ENDPAGE=1604;TITLE=GECCO'21: Proceedings of the Genetic and Evolutionary Computation Conference Companion
GECCO'21: Proceedings of the Genetic and Evolutionary Computation Conference Companion, 1596-1604. ACM
STARTPAGE=1596;ENDPAGE=1604;TITLE=GECCO'21: Proceedings of the Genetic and Evolutionary Computation Conference Companion
Optimal Lens Design constitutes a fundamental, long-standing real-world optimization challenge. Potentially large number of optima, rich variety of critical points, as well as solid understanding of certain optimal designs per simple problem instance
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e38bd522adc9b3e51a58116ea6537815
http://arxiv.org/abs/2105.10541
http://arxiv.org/abs/2105.10541