Zobrazeno 1 - 10
of 795
pro vyhledávání: '"Konnov, A. V."'
Autor:
Konnov, Igor V.
We consider a general decomposable convex optimization problem. By using right-hand side allocation technique, it can be transformed into a collection of small dimensional optimization problems. The master problem is a convex non-smooth optimization
Externí odkaz:
http://arxiv.org/abs/2010.00630
Autor:
Konnov, I. V.
We discuss several aspects of creation of adequate mathematical models in other sciences. In particular, many difficulties stem from great complexity of the source systems and the presence of a variety of uncertain factors. We illustrate the effect o
Externí odkaz:
http://arxiv.org/abs/2004.02629
Autor:
Konnov, I. V.
We consider an extension of a noncooperative game problem where players have joint binding constraints. In this case, justification of a generalized equilibrium point needs a reasonable mechanism for attaining this state. We suggest to combine a pena
Externí odkaz:
http://arxiv.org/abs/2003.09707
Autor:
Konnov, I. V.
We consider relative or subjective optimization problems where the goal function and feasible set are dependent of the current state of the system under consideration. In general, they are formulated as quasi-equilibrium problems, hence finding their
Externí odkaz:
http://arxiv.org/abs/2003.06243
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Konnov, Stanislav V. a, Medeiros-Costa, Izabel C. a, c, Cruchade, Hugo a, Dubray, Florent a, Debost, Maxime a, b, Gilson, Jean-Pierre a, Valtchev, Valentin a, Dath, Jean-Pierre c, Nesterenko, Nikolai c, Mintova, Svetlana a, ⁎
Publikováno v:
In Applied Catalysis A, General 25 August 2022 644
Publikováno v:
Journal of Optimization Theory & Applications; Nov2024, Vol. 203 Issue 2, p1767-1793, 27p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Konnov, I. V.
We consider a method of pairwise variations for smooth optimization problems, which involve polyhedral constraints. It consists in making steps with respect to the difference of two selected extreme points of the feasible set together with special th
Externí odkaz:
http://arxiv.org/abs/1701.02874
Autor:
Konnov, I. V.
We suggest an adaptive version of a partial linearization method for composite optimization problems. The goal function is the sum of a smooth function and a non necessary smooth convex separable function, whereas the feasible set is the correspondin
Externí odkaz:
http://arxiv.org/abs/1605.01971