Zobrazeno 1 - 10
of 100
pro vyhledávání: '"Komarov, Mikhail"'
Publikováno v:
Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика, Vol 23, Iss 2, Pp 157-168 (2023)
We consider the problems of multiple interpolation of analytic functions $f(z)=f_0+f_1z+\dots$ in the unit disk with node $z=0$ by means of simple partial fractions (logarithmic derivatives of algebraic polynomials) with free poles and with all poles
Externí odkaz:
https://doaj.org/article/cafed1e05e55458cac8d12c8f545fd67
Autor:
Komarov, Mikhail A.
Let $\Pi_n$ be the class of algebraic polynomials $P$ of degree $n$, all of whose zeros lie on the segment $[-1,1]$. In 1995, S.P. Zhou has proved the following Tur\'{a}n type reverse Markov-Nikol'skii inequality: $\|P'\|_{L_p[-1,1]}>c\, {(\sqrt{n})}
Externí odkaz:
http://arxiv.org/abs/2405.19158
Autor:
Komarov, Mikhail A.
Let $g_n$, $n=1,2,\dots$, be the logarithmic derivative of a complex polynomial having all zeros on the unit circle, i.e., a function of the form $g_n(z)=(z-z_{1})^{-1}+\dots+(z-z_{n})^{-1}$, $|z_1|=\dots=|z_n|=1$. For any $p>0$, we establish the bou
Externí odkaz:
http://arxiv.org/abs/2209.06689
Autor:
Komarov, Mikhail A.
Publikováno v:
Indagationes Mathematicae, 2020
Let $\alpha_{n1},\dots,\alpha_{nn}$ be the zeros of the $n$th Bessel polynomial $y_n(z)$ and let $a_{nk}=1-\alpha_{nk}/2$, $b_{nk}=1+\alpha_{nk}/2$ $(k=1,\dots,n)$. We propose the new formula \[z f'(z)\approx \sum_{k=1}^n \big(f(a_{nk} z)-f(b_{nk} z)
Externí odkaz:
http://arxiv.org/abs/1911.05984
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Komarov, Mikhail A.
For arbitrary $n$ complex numbers $a_{\nu-1}$, $\nu=1,\dots,n$, where $n$ is sufficiently large, we get the representation in the form of power sums: $a_{\nu-1}=\lambda_1^\nu+\dots+\lambda_{2n+1}^\nu$, where $\lambda_k$ are distinct points, such that
Externí odkaz:
http://arxiv.org/abs/1807.06499
Autor:
Komarov, Mikhail A.
We obtain an estimate for uniform approximation rate of bounded analytic in the unit disk functions by logarithmic derivatives of $C$-polynomials, i.e., polynomials, all of whose zeros lie on the unit circle $C:|z|=1$.
Externí odkaz:
http://arxiv.org/abs/1804.08918
Autor:
Komarov, Mikhail A.1 (AUTHOR) kami9@yandex.ru
Publikováno v:
Constructive Approximation. Dec2023, Vol. 58 Issue 3, p551-563. 13p.
Autor:
Smetanin, Sergey, Komarov, Mikhail
Publikováno v:
In Information Processing and Management May 2021 58(3)
Autor:
Medvedev, Ilya Nikolaevich1 ilmedv1@yandex.ru, Komarov, Mikhail Nikonorovich2, Karpov, Vladimir Yurevich2, Dorontsev, Alexander Viktorovich3, Dorontseva, Xenia Alexandrovna3, Sysoeva, Elena Yurievna4
Publikováno v:
Journal of Biochemical Technology. 2023, Vol. 14 Issue 2, p50-60. 11p.