Zobrazeno 1 - 10
of 3 422
pro vyhledávání: '"Kolesnikov, A V"'
Autor:
Kolesnikov, A. V.1 (AUTHOR) kolesnikov@ginras.ru, Pan'kov, V. N.1 (AUTHOR), Pan'kova, V. A.1 (AUTHOR), Latysheva, I. V.1 (AUTHOR), Shatsillo, A. V.1,2 (AUTHOR), Kuznetsov, N. B.1 (AUTHOR)
Publikováno v:
Doklady Earth Sciences. Nov2024, Vol. 519 Issue 1, p1814-1818. 5p.
Autor:
Kolesnikov, Alexander V.
In this survey paper we present classical and recent results relating the auction design and the optimal transportation theory. In particular, we discuss in details the seminal result of Daskalakis, Deckelbaum and Tzamos \cite{DDT} about duality betw
Externí odkaz:
http://arxiv.org/abs/2312.08077
Autor:
Kolesnikov, A. V.1 (AUTHOR) kolesnikov@ginras.ru, Pan'kova, V. A.1 (AUTHOR), Pan'kov, V. N.1 (AUTHOR), Desiatkin, V. D.1 (AUTHOR), Latysheva, I. V.1 (AUTHOR), Shatsillo, A. V.1,2 (AUTHOR), Kuznetsov, N. B.1 (AUTHOR), Romanyuk, T. V.2 (AUTHOR)
Publikováno v:
Doklady Earth Sciences. Oct2024, Vol. 518 Issue 2, p1717-1722. 6p.
We consider the problem of revenue-maximizing Bayesian auction design with several bidders having independent private values over several items. We show that it can be reduced to the problem of continuous optimal transportation introduced by Beckmann
Externí odkaz:
http://arxiv.org/abs/2203.06837
Regular large-scale polarimetric observations in Crimean astrophysical observatory began in the early 1960s. In 2002 - 2017 the single-channel aperture photometer-polarimeter with a quarter-wave plate at the 2.6-m Shajn mirror telescope (SMT) was use
Externí odkaz:
http://arxiv.org/abs/2112.12277
Autor:
Bassetto, Marco, Kolesnikov, Alexander V., Lewandowski, Dominik, Kiser, Jianying Z., Halabi, Maximilian, Einstein, David E., Choi, Elliot H., Palczewski, Krzysztof, Kefalov, Vladimir J., Kiser, Philip D.
Publikováno v:
In Cell Reports 28 May 2024 43(5)
Motivated by the geodesic barycenter problem from optimal transportation theory, we prove a natural generalization of the Blaschke-Santalo inequality and the affine isoperimetric inequalities for many sets and many functions. We derive from it an ent
Externí odkaz:
http://arxiv.org/abs/2010.00135
The multistsochastic Monge--Kantorovich problem on the product $X = \prod_{i=1}^n X_i$ of $n$ spaces is a generalization of the multimarginal Monge--Kantorovich problem. For a given integer number $1 \le k
Externí odkaz:
http://arxiv.org/abs/2008.07926
In this paper we further develop the theory of f-divergences for log-concave functions and their related inequalities. We establish Pinsker inequalities and new affine invariant entropy inequalities. We obtain new inequalities on functional affine su
Externí odkaz:
http://arxiv.org/abs/2005.07055
We prove that for any semi-norm $\|\cdot\|$ on $\mathbb{R}^n,$ and any symmetric convex body $K$ in $\mathbb{R}^n,$ \begin{equation}\label{ineq-abs2} \int_{\partial K} \frac{\|n_x\|^2}{\langle x,n_x\rangle}\leq \frac{1}{|K|}\left(\int_{\partial K} \|
Externí odkaz:
http://arxiv.org/abs/2004.06103