Zobrazeno 1 - 10
of 68
pro vyhledávání: '"Kolbjørnsen, Odd"'
Vision Transformer (ViT) architectures traditionally employ a grid-based approach to tokenization independent of the semantic content of an image. We propose a modular superpixel tokenization strategy which decouples tokenization and feature extracti
Externí odkaz:
http://arxiv.org/abs/2408.07680
Soft-sensors are gaining popularity due to their ability to provide estimates of key process variables with little intervention required on the asset and at a low cost. In oil and gas production, virtual flow metering (VFM) is a popular soft-sensor t
Externí odkaz:
http://arxiv.org/abs/2304.06310
This paper explores learned-context neural networks. It is a multi-task learning architecture based on a fully shared neural network and an augmented input vector containing trainable task parameters. The architecture is interesting due to its powerf
Externí odkaz:
http://arxiv.org/abs/2303.00788
Publikováno v:
In Neural Networks November 2024 179
Virtual flow metering (VFM) is a cost-effective and non-intrusive technology for inferring multiphase flow rates in petroleum assets. Inferences about flow rates are fundamental to decision support systems that operators extensively rely on. Data-dri
Externí odkaz:
http://arxiv.org/abs/2103.08713
Publikováno v:
Applied Soft Computing, Volume 112, 2021
Recent works have presented promising results from the application of machine learning (ML) to the modeling of flow rates in oil and gas wells. Encouraging results and advantageous properties of ML models, such as computationally cheap evaluation and
Externí odkaz:
http://arxiv.org/abs/2102.01391
Nonlinear Topics in the Bayesian Approach to Inverse Problems with Applications to Seismic Inversion
Autor:
Kolbjørnsen, Odd
Paper I considers piecewise affine inverse problems. This is a large group of nonlinear inverse problems. Problems that obey certain variational structures are of this type. In inverse problems it is frequently such that some features are well determ
Externí odkaz:
http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-489
Autor:
Greiner, Thomas Larsen, Kolbjørnsen, Odd, Lie, Jan Erik, Harris Nilsen, Espen, Kjeldsrud Evensen, Andreas, Gelius, Leiv-J.
Publikováno v:
Greiner, Thomas Larsen Kolbjørnsen, Odd Lie, Jan Erik Harris Nilsen, Espen Kjeldsrud Evensen, Andreas Gelius, Leiv-J. . Cross-streamer wavefield interpolation using deep convolutional networks. SEG Technical Program Expanded Abstracts 2019. 2019. USA: SEG
Externí odkaz:
http://hdl.handle.net/10852/77027
https://www.duo.uio.no/bitstream/handle/10852/77027/1/2019-Cross_Streamer_Wavefield_Interpolation.pdf
https://www.duo.uio.no/bitstream/handle/10852/77027/1/2019-Cross_Streamer_Wavefield_Interpolation.pdf
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.