Zobrazeno 1 - 10
of 365
pro vyhledávání: '"Kolbitsch, P"'
Autor:
Posselt, Christiane, Avci, Mehmet Yigit, Yigitsoy, Mehmet, Schünke, Patrick, Kolbitsch, Christoph, Schäffter, Tobias, Remmele, Stefanie
Purpose: To provide a simulation framework for routine neuroimaging test data, which allows for "stress testing" of deep segmentation networks against acquisition shifts that commonly occur in clinical practice for T2 weighted (T2w) fluid attenuated
Externí odkaz:
http://arxiv.org/abs/2311.01894
Autor:
Kofler, Andreas, Kerkering, Kirsten Miriam, Göschel, Laura, Fillmer, Ariane, Kolbitsch, Cristoph
Objective: We propose a method for the reconstruction of parameter-maps in Quantitative Magnetic Resonance Imaging (QMRI). Methods: Because different quantitative parameter-maps differ from each other in terms of local features, we propose a method w
Externí odkaz:
http://arxiv.org/abs/2308.03460
Quantitative Magnetic Resonance Imaging (qMRI) enables the reproducible measurement of biophysical parameters in tissue. The challenge lies in solving a nonlinear, ill-posed inverse problem to obtain the desired tissue parameter maps from acquired ra
Externí odkaz:
http://arxiv.org/abs/2306.11023
Autor:
Kofler, Andreas, Altekrüger, Fabian, Ba, Fatima Antarou, Kolbitsch, Christoph, Papoutsellis, Evangelos, Schote, David, Sirotenko, Clemens, Zimmermann, Felix Frederik, Papafitsoros, Kostas
We propose a method for fast and automatic estimation of spatially dependent regularization maps for total variation-based (TV) tomography reconstruction. The estimation is based on two distinct sub-networks, with the first sub-network estimating the
Externí odkaz:
http://arxiv.org/abs/2304.08350
Autor:
Kofler, Andreas, Altekrüger, Fabian, Ba, Fatima Antarou, Kolbitsch, Christoph, Papoutsellis, Evangelos, Schote, David, Sirotenko, Clemens, Zimmermann, Felix Frederik, Papafitsoros, Kostas
We introduce a method for fast estimation of data-adapted, spatio-temporally dependent regularization parameter-maps for variational image reconstruction, focusing on total variation (TV)-minimization. Our approach is inspired by recent developments
Externí odkaz:
http://arxiv.org/abs/2301.05888
Autor:
Kofler, Andreas, Wald, Christian, Schaeffter, Tobias, Haltmeier, Markus, Kolbitsch, Christoph
Sparsity-based methods have a long history in the field of signal processing and have been successfully applied to various image reconstruction problems. The involved sparsifying transformations or dictionaries are typically either pre-trained using
Externí odkaz:
http://arxiv.org/abs/2206.04447
Autor:
Kofler, Andreas, Wald, Christian, Schaeffter, Tobias, Haltmeier, Markus, Kolbitsch, Christoph
The concept of sparsity has been extensively applied for regularization in image reconstruction. Typically, sparsifying transforms are either pre-trained on ground-truth images or adaptively trained during the reconstruction. Thereby, learning algori
Externí odkaz:
http://arxiv.org/abs/2203.02166
Autor:
Darian Viezzer, Thomas Hadler, Jan Gröschel, Clemens Ammann, Edyta Blaszczyk, Christoph Kolbitsch, Simone Hufnagel, Riccardo Kranzusch-Groß, Steffen Lange, Jeanette Schulz-Menger
Publikováno v:
EBioMedicine, Vol 102, Iss , Pp 105055- (2024)
Summary: Background: In cardiovascular magnetic resonance imaging parametric T1 mapping lacks universally valid reference values. This limits its extensive use in the clinical routine. The aim of this work was the introduction of our self-developed M
Externí odkaz:
https://doaj.org/article/b57e2bb3e0f54f1bb5b556935e6330ee
Purpose: Iterative Convolutional Neural Networks (CNNs) which resemble unrolled learned iterative schemes have shown to consistently deliver state-of-the-art results for image reconstruction problems across different imaging modalities. However, beca
Externí odkaz:
http://arxiv.org/abs/2102.00783
Autor:
Darian Viezzer, MSc, BEng, Thomas Hadler, MSc, Jan Gröschel, MD, Clemens Ammann, Edyta Blaszczyk, MD, Christoph Kolbitsch, Steffen Lange, Jeanette Schulz-Menger
Publikováno v:
Journal of Cardiovascular Magnetic Resonance, Vol 26, Iss , Pp 100981- (2024)
Externí odkaz:
https://doaj.org/article/b770140158994e43879f1223df33ba13