Zobrazeno 1 - 10
of 261
pro vyhledávání: '"Kolařik, Miroslav"'
On an arbitrary meet-semilattice S with 0 we define an orthogonality relation and investigate the lattice Cl(S) of all subsets of S closed under this orthogonality. We show that if S is atomic then Cl(S) is a complete atomic Boolean algebra. If S is
Externí odkaz:
http://arxiv.org/abs/2404.13361
M.S. Rao recently investigated some sorts of special filters in distributive pseudocomplemented lattices. In our paper we extend this study to lattices which need neither be distributive nor pseudocomplemented. For this sake we define a certain modif
Externí odkaz:
http://arxiv.org/abs/2306.09958
We prove that the 18-element non-lattice orthomodular poset depicted in the paper is the smallest one and unique up to isomorphism. Since not every Boolean poset is orthomodular, we consider the class of the so-called generalized orthomodular posets
Externí odkaz:
http://arxiv.org/abs/2210.05334
In their recent paper on posets with a pseudocomplementation denoted by * the first and the third author introduced the concept of a *-ideal. This concept is in fact an extension of a similar concept introduced in distributive pseudocomplemented latt
Externí odkaz:
http://arxiv.org/abs/2208.01432
Autor:
Stadler, Marc, Kolarik, Miroslav
Publikováno v:
In Fungal Biology Reviews September 2024 49
We prove that every not necessarily bounded poset P=(P,\le,') with an antitone involution can be extended to a residuated poset E(P)=(E(P),\le,\odot,\rightarrow,1) where x'=x\rightarrow0 for all x\in P. If P is a lattice with an antitone involution t
Externí odkaz:
http://arxiv.org/abs/2004.14127
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
As algebraic semantics of the logic of quantum mechanics there are usually used orthomodular posets, i.e. bounded posets with a complementation which is an antitone involution and where the join of orthogonal elements exists and the orthomodular law
Externí odkaz:
http://arxiv.org/abs/1911.05138