Zobrazeno 1 - 10
of 79
pro vyhledávání: '"Koerber, Thomas"'
Autor:
Eichmair, Michael, Koerber, Thomas
The Riemannian Penrose inequality is a fundamental result in mathematical relativity. It has been a long-standing conjecture of G. Huisken that an analogous result should hold in the context of extrinsic geometry. In this paper, we resolve this conje
Externí odkaz:
http://arxiv.org/abs/2411.02113
We construct a sequence $\{\Sigma_\ell\}_{\ell=1}^\infty$ of closed, axially symmetric surfaces $\Sigma_\ell\subset \mathbb{R}^3$ that converges to the unit sphere in $W^{2,p}\cap C^1$ for every $p\in[1,\infty)$ and such that, for every $\ell$, $$ \i
Externí odkaz:
http://arxiv.org/abs/2306.03848
Autor:
Huisken, Gerhard, Koerber, Thomas
Let $(M,g)$ be a complete, connected, non-compact Riemannian three-manifold with non-negative Ricci curvature satisfying $Ric\geq\varepsilon\,\operatorname{tr}(Ric)\,g$ for some $\varepsilon>0$. In this note, we give a new proof based on inverse mean
Externí odkaz:
http://arxiv.org/abs/2305.04702
Autor:
Eichmair, Michael, Koerber, Thomas
Let $(M,g)$ be an asymptotically flat Riemannian manifold of dimension $3\leq n\leq 7$ with non-negative scalar curvature. R. Schoen has conjectured that $(M,g)$ is isometric to Euclidean space if it admits a non-compact area-minimizing hypersurface
Externí odkaz:
http://arxiv.org/abs/2303.12200
Autor:
Eichmair, Michael, Koerber, Thomas
Publikováno v:
Comm. Math. Phys. (2023)
Building on previous works of H. L. Bray, of P. Miao, and of S. Almaraz, E. Barbosa, and L. L. de Lima, we develop a doubling procedure for asymptotically flat half-spaces $(M,g)$ with horizon boundary $\Sigma\subset M$ and mass $m\in\mathbb{R}$. If
Externí odkaz:
http://arxiv.org/abs/2302.00175
Autor:
Koerber, Thomas, Schiele, Holger
Publikováno v:
Journal of Business & Industrial Marketing, 2024, Vol. 39, Issue 13, pp. 68-81.
Externí odkaz:
http://www.emeraldinsight.com/doi/10.1108/JBIM-05-2023-0260
Let $(M,g)$ be a Riemannian $3$-manifold that is asymptotic to Schwarzschild. We study the existence of large area-constrained Willmore spheres $\Sigma \subset M$ with non-negative Hawking mass and inner radius $\rho$ dominated by the area radius $\l
Externí odkaz:
http://arxiv.org/abs/2204.04102
Autor:
Eichmair, Michael, Koerber, Thomas
Let $(M,g)$ be an asymptotically flat Riemannian manifold of dimension $n\geq 3$ with positive mass. We give a short proof based on Lyapunov-Schmidt reduction of the existence of an asymptotic foliation of $(M, g)$ by stable constant mean curvature s
Externí odkaz:
http://arxiv.org/abs/2201.12081
Autor:
Eichmair, Michael, Koerber, Thomas
We refine the Lyapunov-Schmidt analysis developed in our recent paper arxiv:2101.12665 to study the geometric center of mass of the asymptotic foliation by area-constrained Willmore surfaces of initial data for the Einstein field equations. If the sc
Externí odkaz:
http://arxiv.org/abs/2201.12077
Autor:
Eichmair, Michael, Koerber, Thomas
We apply the method of Lyapunov-Schmidt reduction to study large area-constrained Willmore surfaces in Riemannian 3-manifolds asymptotic to Schwarzschild. In particular, we prove that the end of such a manifold is foliated by distinguished area-const
Externí odkaz:
http://arxiv.org/abs/2101.12665