Zobrazeno 1 - 10
of 136
pro vyhledávání: '"Koehler Bernd"'
The common believe about strict measurement reciprocity between scanning laser detection and scanning laser excitation is disproved by a simple experiment. Nevertheless, a deeper study based on the reciprocity relation reveals correct reciprocal meas
Externí odkaz:
http://arxiv.org/abs/2404.16424
The motion visualization in a structural component was studied for defect detection. Elastic motions were excited by hammer impacts at multiple points and received by an accelerometer at a fixed point. Reciprocity in elastodynamics is only valid unde
Externí odkaz:
http://arxiv.org/abs/2309.15198
Autor:
Kovac Julien, Heinrich Lukas, Koehler Bernd, Mehner Andreas, Clausen Brigitte, Zoch Hans-Werner
Publikováno v:
MATEC Web of Conferences, Vol 190, p 15001 (2018)
Al-Sc-Zr alloys are interesting for the production of high strength micro components by micro deep drawing. These alloys show a good hardenability due to the formation of nanometer-scale spheroidal Al3(Sc, Zr) precipitates, which are highly coherent
Externí odkaz:
https://doaj.org/article/cca3e79d2ec1434abb7a9b2ed362a45d
Process chain for the fabrication of hardenable aluminium-zirconium micro-components by deep drawing
Autor:
Toenjes Anastasiya, Kovac Julien, Koehler Bernd, von Hehl Axel, Mehner Andreas, Clausen Brigitte, Zoch Hans-Werner
Publikováno v:
MATEC Web of Conferences, Vol 190, p 15013 (2018)
Today, micro components are used in various industrial sectors such as electronics engineering and medical applications. The final quality of such parts depends on each individual step of the production chain from the manufacturing of semi-finished p
Externí odkaz:
https://doaj.org/article/b45bcf6e19c34d9480f63a4f08558459
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Prodanova, Nadezhda, Stegmaier, Johannes, Allgeier, Stephan, Bohn, Sebastian, Stachs, Oliver, Köhler, Bernd, Mikut, Ralf, Bartschat, Andreas
Transfer learning is a powerful tool to adapt trained neural networks to new tasks. Depending on the similarity of the original task to the new task, the selection of the cut-off layer is critical. For medical applications like tissue classification,
Externí odkaz:
http://arxiv.org/abs/1806.07073
Publikováno v:
In Ultrasonics May 2022 122
Publikováno v:
In Ultrasonics July 2021 114
Autor:
Gengenbach, Ulrich, Ungerer, Martin, Koker, Liane, Reichert, Klaus-Martin, Stiller, Peter, Allgeier, Stephan, Köhler, Bernd, Zhu, Xiaoqi, Huang, Chengyuan, Hagenmeyer, Veit
Publikováno v:
In Mechatronics October 2020 70
Autor:
Gartsev, Sergey, Köhler, Bernd
Publikováno v:
In NDT and E International July 2020 113