Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Kodess, Alex"'
For positive integers $s,t,u,v$, we define a bipartite graph $\Gamma_{\mathbb{R}}(X^s Y^t,X^u Y^v)$ where each partite set is a copy of $\mathbb{R}^3$, and a vertex $(a_1,a_2,a_3)$ in the first partite set is adjacent to a vertex $[x_1,x_2,x_3]$ in t
Externí odkaz:
http://arxiv.org/abs/2101.09448
We present an example of a result in graph theory that is used to obtain a result in another branch of mathematics. More precisely, we show that the isomorphism of certain directed graphs implies that some trinomials over finite fields have the same
Externí odkaz:
http://arxiv.org/abs/1904.09657
Publikováno v:
Contemporary Developments in Finite Fields and Applications, p. 160--178, 2016
Let $p$ be a prime, $e$ a positive integer, $q = p^e$, and let $\mathbb{F}_q$ denote the finite field of $q$ elements. Let $f_i : \mathbb{F}_q^2\to\mathbb{F}_q$ be arbitrary functions, where $1\le i\le l$, $i$ and $l$ are integers. The digraph $D = D
Externí odkaz:
http://arxiv.org/abs/1807.11360
Autor:
Kodess, Alex, Lazebnik, Felix
Publikováno v:
J. Inter. Net. 17, 1741006 (2017)
Let $p$ be a prime $e$ be a positive integer, $q = p^e$, and let $\mathbb{F}_q$ denote the finite field of $q$ elements. Let $m,n$, $1\le m,n\le q-1$, be integers. The monomial digraph $D= D(q;m,n)$ is defined as follows: the vertex set of $D$ is $\m
Externí odkaz:
http://arxiv.org/abs/1807.11362
Autor:
Kodess, Alex, Lazebnik, Felix
Publikováno v:
Electron J Combin. 22(3) (2015), P3.27, 1--11
Let $p$ be a prime, $e$ a positive integer, $q = p^e$, and let $\mathbb{F}_q$ denote the finite field of $q$ elements. Let $f_i : \mathbb{F}_q^2\to\mathbb{F}_q$ be arbitrary functions, where $1\le i\le l$, $i$ and $l$ are integers. The digraph $D = D
Externí odkaz:
http://arxiv.org/abs/1807.11347
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.