Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Kodai Ueyoshi"'
Autor:
Pouya Houshmand, Giuseppe M. Sarda, Vikram Jain, Kodai Ueyoshi, Ioannis A. Papistas, Man Shi, Qilin Zheng, Debjyoti Bhattacharjee, Arindam Mallik, Peter Debacker, Diederik Verkest, Marian Verhelst
Publikováno v:
IEEE Journal of Solid-State Circuits. 58:203-215
Autor:
Tadahiro Kuroda, Tatsuo Omori, Shinya Takamaeda-Yamazaki, Masato Motomura, Mototsugu Hamada, Kota Shiba, Kodai Ueyoshi
Publikováno v:
IEEE Transactions on Circuits and Systems I: Regular Papers. 68:692-703
A 28.8-GB/s 96-MB 3D-stacked SRAM is presented. A total of eight SRAM dies, designed in a 40-nm CMOS process, are vertically stacked and connected using an inductive coupling wireless link with a low-voltage NMOS push-pull transmitter that reduces th
Autor:
Kodai Ueyoshi, Ioannis A. Papistas, Pouya Houshmand, Giuseppe M. Sarda, Vikram Jain, Man Shi, Qilin Zheng, Sebastian Giraldo, Peter Vrancx, Jonas Doevenspeck, Debjyoti Bhattacharjee, Stefan Cosemans, Arindam Mallik, Peter Debacker, Diederik Verkest, Marian Verhelst
Publikováno v:
2022 IEEE International Solid- State Circuits Conference (ISSCC).
Autor:
Takumi Kudo, Yuka Oba, Shinya Takamaeda-Yamazaki, Kazutoshi Hirose, Ryota Uematsu, Kota Ando, Kodai Ueyoshi, Masato Motomura, Tetsuya Asai, Masayuki Ikebe
Publikováno v:
IEICE Transactions on Information and Systems. :2341-2353
Autor:
Masato Motomura, Kazutoshi Hirose, Tadahiro Kuroda, Kota Ando, Kodai Ueyoshi, Shinya Takamaeda-Yamazaki, Mototsugu Hamada
Publikováno v:
IEEE Journal of Solid-State Circuits. 54:186-196
QUEST is a programmable multiple instruction, multiple data (MIMD) parallel accelerator for general-purpose state-of-the-art deep neural networks (DNNs). It features die-to-die stacking with three-cycle latency, 28.8 GB/s, 96 MB, and eight SRAMs usin
Autor:
Tatsuo Omori, Mototsugu Hamada, Kota Shiba, Shinya Takamaeda-Yamazaki, Tadahiro Kuroda, Kota Ando, Kodai Ueyoshi, Kazutoshi Hirose, Masato Motomura
Publikováno v:
ISCAS
A 28.8-GB/s 96-MB 3D-stacked SRAM is presented. A total of eight SRAM dies, designed in a 40-nm CMOS process, are vertically stacked and connected using an inductive coupling wireless link with a low-voltage NMOS push-pull transmitter that reduces th
Autor:
Kentaro Orimo, Haruyoshi Yonekawa, Hiroki Nakahara, Tadahiro Kuroda, Shinya Takamaeda-Yamazaki, Kodai Ueyoshi, Tetsuya Asai, Masayuki Ikebe, Shimpei Sato, Masato Motomura, Kota Ando
Publikováno v:
IEEE Journal of Solid-State Circuits. 53:983-994
A versatile reconfigurable accelerator architecture for binary/ternary deep neural networks is presented. In-memory neural network processing without any external data accesses, sustained by the symmetry and simplicity of the computation of the binar
Autor:
Masato Motomura, Ryota Uematsu, Masayuki Ikebe, Tetsuya Asai, Kodai Ueyoshi, Kota Ando, Kazutoshi Hirose, Shinya Takamaeda-Yamazaki
Publikováno v:
Nonlinear Theory and Its Applications, IEICE. 9:453-465
Autor:
Yuichiro Mitani, Masato Motomura, Takao Marukame, Alexandre Schmid, Tetsuya Asai, Yusuke Higashi, Masamichi Suzuki, Kodai Ueyoshi
Publikováno v:
IEEE Transactions on Circuits and Systems II: Express Briefs. 64:462-466
Remarkable hardware robustness of deep learning (DL) is revealed by error injection analyses performed using a custom hardware model implementing parallelized restricted Boltzmann machines (RBMs). RBMs in deep belief networks demonstrate robustness a
FPGA Implementation of a Scalable and Highly Parallel Architecture for Restricted Boltzmann Machines
Publikováno v:
Circuits and Systems. :2132-2141
Restricted Boltzmann Machines (RBMs) are an effective model for machine learning; however, they require a significant amount of processing time. In this study, we propose a highly parallel, highly flexible architecture that combines small and complet