Zobrazeno 1 - 10
of 52
pro vyhledávání: '"Kocsis, Zoltán"'
Autor:
Kocsis, Zoltan A.
We introduce a proof-theoretic method for showing nondefinability of second-order intuitionistic connectives by quantifier-free schemata. We apply the method to confirm that Taranovsky's "realizability disjunction" connective does not admit a quantif
Externí odkaz:
http://arxiv.org/abs/2310.03640
Autor:
Kocsis, Zoltan A.
We classify all apartness relations definable in propositional logics extending intuitionistic logic using Heyting algebra semantics. We show that every Heyting algebra which contains a non-trivial apartness term satisfies the weak law of excluded mi
Externí odkaz:
http://arxiv.org/abs/2209.03920
We introduce structured decompositions. These are category-theoretic data structures which simlutaneously generalize notions from graph theory (including tree-width, layered tree-width, co-tree-width and graph decomposition width) geometric group the
Externí odkaz:
http://arxiv.org/abs/2207.06091
Mathematics enters the period of change unprecedented in its history, perhaps even a revolution: a switch to use of computers as assistants and checkers in production of proofs. This requires rethinking traditional approaches to mathematics education
Externí odkaz:
http://arxiv.org/abs/2201.08364
Given a finite structure $M$ and property $p$, it is a natural to study the degree of satisfiability of $p$ in $M$; i.e. to ask: what is the probability that uniformly randomly chosen elements in $M$ satisfy $p$? In group theory, a well-known result
Externí odkaz:
http://arxiv.org/abs/2110.11515
Treewidth is a well-known graph invariant with multiple interesting applications in combinatorics. On the practical side, many NP-complete problems are polynomial-time (sometimes even linear-time) solvable on graphs of bounded treewidth. On the theor
Externí odkaz:
http://arxiv.org/abs/2105.05372
Tree-width is an invaluable tool for computational problems on graphs. But often one would like to compute on other kinds of objects (e.g. decorated graphs or even algebraic structures) where there is no known tree-width analogue. Here we define an a
Externí odkaz:
http://arxiv.org/abs/2104.01841
Autor:
Kocsis, Zoltan A.
A well-known theorem of Gustafson states that in a non-Abelian group the degree of satisfiability of $xy=yx$, i.e. the probability that two uniformly randomly chosen group elements $x,y$ obey the equation $xy=yx$, is no larger than $\frac{5}{8}$. The
Externí odkaz:
http://arxiv.org/abs/2002.01773
Publikováno v:
In European Journal of Combinatorics December 2023 114
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.