Zobrazeno 1 - 10
of 21
pro vyhledávání: '"Kochi, S. R. Siva Prasad"'
Autor:
Kochi, S R Siva Prasad, Ramakrishna, M
In this paper, eight different troubled cell indicators (shock detectors) are reviewed for the solution of nonlinear hyperbolic conservation laws using discontinuous Galerkin (DG) method and a WENO limiter on both structured and unstructured meshes.
Externí odkaz:
http://arxiv.org/abs/2309.11973
Autor:
Kochi, S R Siva Prasad, Ramakrishna, M
An analytical solution for high supersonic flow over a circular cylinder based on Schneider's inverse method has been presented. In the inverse method, a shock shape is assumed and the corresponding flow field and the shape of the body producing the
Externí odkaz:
http://arxiv.org/abs/2307.16407
Autor:
Kochi, S R Siva Prasad, Ramakrishna, M
In this paper, we study the Mach reflection phenomenon in inviscid flows using a higher order discontinuous Galerkin method and overset grids. We use the shock capturing procedure proposed in Siva Prasad Kochi et al. using overset grids to capture th
Externí odkaz:
http://arxiv.org/abs/2301.04309
Autor:
Kochi, S R Siva Prasad, Ramakrishna, M
A new scheme for communication between overset grids using subcells and Weighted Essentially Non Oscillatory (WENO) reconstruction for two-dimensional problems has been proposed. The effectiveness of this procedure is demonstrated using the discontin
Externí odkaz:
http://arxiv.org/abs/2106.06285
Autor:
Kochi, S R Siva Prasad, Ramakrishna, M
In this paper, we generalize the compact subcell weighted essentially non oscillatory (CSWENO) limiting strategy for Runge-Kutta discontinuous Galerkin method developed recently by us in 2021 for structured meshes to unstructured triangular meshes. T
Externí odkaz:
http://arxiv.org/abs/2106.06280
Autor:
Kochi, S R Siva Prasad, Ramakrishna, M
A new procedure to capture the shocks has been proposed and is demonstrated for the solutions of two-dimensional Euler equations using discontinuous Galerkin method and overset grids. A discontinuous Galerkin solver using a coarse grid provides the t
Externí odkaz:
http://arxiv.org/abs/2003.01378
Autor:
Kochi, S R Siva Prasad, Ramakrishna, M
A compact subcell WENO (CSWENO) limiter is proposed for the solution of hyperbolic conservation laws with Discontinuous Galerkin Method which uses only the immediate neighbors of a given cell. These neighbors are divided into the required stencil for
Externí odkaz:
http://arxiv.org/abs/1904.11147
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Kochi, S. R. Siva Prasad1 (AUTHOR) siva.ksr@gmail.com, Ramakrishna, M.1 (AUTHOR)
Publikováno v:
International Journal of Computer Mathematics. Mar2021, Vol. 98 Issue 3, p608-626. 19p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.