Zobrazeno 1 - 10
of 100
pro vyhledávání: '"Koc, Aykut"'
Transformer-based language models utilize the attention mechanism for substantial performance improvements in almost all natural language processing (NLP) tasks. Similar attention structures are also extensively studied in several other areas. Althou
Externí odkaz:
http://arxiv.org/abs/2209.12816
The processing of legal texts has been developing as an emerging field in natural language processing (NLP). Legal texts contain unique jargon and complex linguistic attributes in vocabulary, semantics, syntax, and morphology. Therefore, the developm
Externí odkaz:
http://arxiv.org/abs/2209.00557
Graph signal processing (GSP) facilitates the analysis of high-dimensional data on non-Euclidean domains by utilizing graph signals defined on graph vertices. In addition to static data, each vertex can provide continuous time-series signals, transfo
Externí odkaz:
http://arxiv.org/abs/2203.07655
Autor:
Çabuk, Tuğçe, Sevim, Nurullah, Mutlu, Emre, Yağcıoğlu, A. Elif Anıl, Koç, Aykut, Toulopoulou, Timothea
Publikováno v:
In Schizophrenia Research April 2024 266:183-189
We investigate cross-lingual sentiment analysis, which has attracted significant attention due to its applications in various areas including market research, politics and social sciences. In particular, we introduce a sentiment analysis framework in
Externí odkaz:
http://arxiv.org/abs/2008.11573
Autor:
Koç, Aykut, Bayiz, Yigit E.
Publikováno v:
IEEE Signal Processing Letters 2021
On the Euclidean domains of classical signal processing, linking of signal samples to the underlying coordinate structure is straightforward. While graph adjacency matrices totally define the quantitative associations among the underlying graph verti
Externí odkaz:
http://arxiv.org/abs/2007.04723
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Recognition of objects with subtle differences has been used in many practical applications, such as car model recognition and maritime vessel identification. For discrimination of the objects in fine-grained detail, we focus on deep embedding learni
Externí odkaz:
http://arxiv.org/abs/1907.09245
Publikováno v:
\c{C}a\u{g}atay I\c{s}{\i}l, Figen S. Oktem, and Aykut Ko\c{c}, "Deep iterative reconstruction for phase retrieval," Appl. Opt. 58, 5422-5431 (2019)
Classical phase retrieval problem is the recovery of a constrained image from the magnitude of its Fourier transform. Although there are several well-known phase retrieval algorithms including the hybrid input-output (HIO) method, the reconstruction
Externí odkaz:
http://arxiv.org/abs/1904.11301
Publikováno v:
In Digital Signal Processing 15 June 2023 137