Zobrazeno 1 - 10
of 67
pro vyhledávání: '"Ko, Chul Ki"'
We discuss the martingales in relevance with $G$-strongly quasi-invariant states on a $C^*$-algebra $\mathcal A$, where $G$ is a separable locally compact group of $*$-automorphisms of $\mathcal A$. In the von Neumann algebra $\mathfrak A$ of the GNS
Externí odkaz:
http://arxiv.org/abs/2403.05590
For a $*$-automorphism group $G$ on a $C^*$- or von Neumann algebra, we study the $G$-quasi invariant states and their properties. The $G$-quasi invariance or $G$-strongly quasi invariance are weaker than the $G$-invariance and have wide applications
Externí odkaz:
http://arxiv.org/abs/2311.01481
Publikováno v:
SIGMA 18 (2022), 035, 19 pages
We consider an open quantum system with Hamiltonian $H_S$ whose spectrum is given by a generalized Fibonacci sequence weakly coupled to a Boson reservoir in equilibrium at inverse temperature $\beta$. We find the generator of the reduced system evolu
Externí odkaz:
http://arxiv.org/abs/2202.02196
We consider the open quantum random walks on the crystal lattices and investigate the central limit theorems for the walks. On the integer lattices the open quantum random walks satisfy the central limit theorems as was shown by Attal, {\it et al}. I
Externí odkaz:
http://arxiv.org/abs/1809.10451
In this paper we construct (nonhomogeneous) quantum Markov chains associated with open quantum random walks. The quantum Markov chain, like the classical Markov chain, is a fundamental tool for the investigation of the basic properties such as reduci
Externí odkaz:
http://arxiv.org/abs/1808.03479
We consider the support of the limit distribution of the Grover walk on crystal lattices with the linear scaling. The orbit of the Grover walk is denoted by the parametric plot of the pseudo-velocity of the Grover walk in the wave space. The region o
Externí odkaz:
http://arxiv.org/abs/1708.03222
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Ko, Chul Ki1 (AUTHOR), Yoo, Hyun Jae2 (AUTHOR) yoohj@hknu.ac.kr
Publikováno v:
Quantum Information Processing. Jan2023, Vol. 22 Issue 1, p1-23. 23p.
Autor:
Ko, Chul Ki, Yoo, Hyun Jae
The quantum walks in the lattice spaces are represented as unitary evolutions. We find a generator for the evolution and apply it to further understand the walks. We first extend the discrete time quantum walks to continuous time walks. Then we const
Externí odkaz:
http://arxiv.org/abs/1305.1749
When we use the entropy method to get the tail bounds, typically the left tail bounds are not good comparing with the right ones. Up to now this asymmetry has been observed many times. Surprisingly we find an entropy method for the left tail that wor
Externí odkaz:
http://arxiv.org/abs/math/0608706