Zobrazeno 1 - 10
of 2 369
pro vyhledávání: '"Knot group"'
Autor:
Conway, Anthony, Miller, Allison N.
This article is concerned with locally flatly immersed surfaces in simply-connected $4$-manifolds where the complement of the surface has fundamental group $\mathbb{Z}$. Once the genus and number of double points are fixed, we classify such immersed
Externí odkaz:
http://arxiv.org/abs/2410.04635
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Tanaka, Kokoro, Taniguchi, Yuta
We give a first example of 2-knots with the same knot group but different knot quandles by analyzing the knot quandles of twist spins. As a byproduct of the analysis, we also give a classification of all twist spins with finite knot quandles.
Co
Co
Externí odkaz:
http://arxiv.org/abs/2308.07782
Each $r$--Dehn filling of the exterior $E(K)$ of a knot $K$ in $S^3$ produces a $3$--manifold $K(r)$, and induces an epimorphism from the knot group $G(K) = \pi_1(E(K))$ to $\pi_1(K(r))$, which trivializes elements in its kernel. To each element $g \
Externí odkaz:
http://arxiv.org/abs/2303.15738
Autor:
Pasini, Federico W.
For a prime knot group, the classifying space for the family of the subgroups generated by the meridians can be seen as an abstract analogue of the ambient manifold in which the knot lives. An explicit model of this ambient classifying space is const
Externí odkaz:
http://arxiv.org/abs/2012.15369
Autor:
Nosaka, Takefumi
Given a homomorphism from a knot group to a fixed group, we introduce an element of a $K_1$-group, which is a generalization of (twisted) Alexander polynomials. We compare this $K_1$-class with other Alexander polynomials. In terms of semi-local ring
Externí odkaz:
http://arxiv.org/abs/2002.10192
Autor:
Conway, Anthony, Powell, Mark
Publikováno v:
Geom. Topol. 27 (2023) 739-821
We study locally flat, compact, oriented surfaces in $4$-manifolds whose exteriors have infinite cyclic fundamental group. We give algebraic topological criteria for two such surfaces, with the same genus $g$, to be related by an ambient homeomorphis
Externí odkaz:
http://arxiv.org/abs/2009.13461
Autor:
Nosaka, Takefumi
Given a homomorphism from a link group to a group, we introduce a $K_1$-class in another way, which is a generalization of the 1-variable Alexander polynomial. We compare the $K_1$-class with $K_1$-classes in \cite{Nos} and with Reidemeister torsions
Externí odkaz:
http://arxiv.org/abs/2004.03255
Autor:
Nosaka, Takefumi
Publikováno v:
In Topology and its Applications 1 September 2021 301
Autor:
Yoshikawa, Katsuyuki
Publikováno v:
Proceedings of the American Mathematical Society, 1988 Apr 01. 102(4), 1065-1070.
Externí odkaz:
https://www.jstor.org/stable/2047358