Zobrazeno 1 - 10
of 76
pro vyhledávání: '"Knieper, Gerhard"'
Autor:
Egidi, Michela, Knieper, Gerhard
In this paper we prove a quantitative closing Lemma for manifolds of negative sectional curvature. As an application we study partner and pseudo-partner orbits for self-crossing closed geodesic.
Externí odkaz:
http://arxiv.org/abs/2403.02077
We prove several results concerning the existence of surfaces of section for the geodesic flows of closed orientable Riemannian surfaces. The surfaces of section $\Sigma$ that we construct are either Birkhoff sections, meaning that they intersect eve
Externí odkaz:
http://arxiv.org/abs/2204.11977
Autor:
Knieper, Gerhard, Schulz, Benjamin H.
In this paper we show that the geodesic flow of a Finsler metric is Anosov if and only if there exists a $C^2$ open neighborhood of Finsler metrics all of whose closed geodesics are hyperbolic. For surfaces this result holds also for Riemannian metri
Externí odkaz:
http://arxiv.org/abs/2202.05084
We obtain Margulis-type asymptotic estimates for the number of free homotopy classes of closed geodesics on certain manifolds without conjugate points. Our results cover all compact surfaces of genus at least 2 without conjugate points.
Comment:
Comment:
Externí odkaz:
http://arxiv.org/abs/2008.02249
Publikováno v:
Ergod. Th. Dynam. Sys. 42 (2022) 974-1022
We refine the recent local rigidity result for the marked length spectrum obtained by the first and third author in \cite{Guillarmou-Lefeuvre-18} and give an alternative proof using the geodesic stretch between two Anosov flows and some uniform estim
Externí odkaz:
http://arxiv.org/abs/1909.08666
Let $X$ be a complete, simply connected harmonic manifold of purely exponential volume growth. This class contains all non-flat harmonic manifolds of non-positive curvature and, in particular all known examples of harmonic manifolds except for the fl
Externí odkaz:
http://arxiv.org/abs/1905.04112
In this article we consider solvable hypersurfaces of the form $N \exp(\R H)$ with induced metrics in the symmetric space $M = SL(3,\C)/SU(3)$, where $H$ a suitable unit length vector in the subgroup $A$ of the Iwasawa decomposition $SL(3,\C) = NAK$.
Externí odkaz:
http://arxiv.org/abs/1904.07288
We prove that for closed surfaces $M$ with Riemannian metrics without conjugate points and genus $\geq 2$ the geodesic flow on the unit tangent bundle $T^1M$ has a unique measure of maximal entropy. Furthermore, this measure is fully supported on $T^
Externí odkaz:
http://arxiv.org/abs/1903.09831
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Knieper, Gerhard
In this note we formulate a condition for complete, connected and non-compact Riemannian manifolds which implies no conjugate points in case that the geodesic flow is Anosov with respect to the Sasaki metric.
Comment: 5 pages
Comment: 5 pages
Externí odkaz:
http://arxiv.org/abs/1709.05814