Zobrazeno 1 - 10
of 229
pro vyhledávání: '"Knauer, Christian"'
Let $P$ be a set of at most $n$ points and let $R$ be a set of at most $n$ geometric ranges, such as for example disks or rectangles, where each $p \in P$ has an associated supply $s_{p} > 0$, and each $r \in R$ has an associated demand $d_{r} > 0$.
Externí odkaz:
http://arxiv.org/abs/2310.02637
Autor:
Arkin, Esther M., Efrat, Alon, Knauer, Christian, Mitchell, Joseph S. B., Polishchuk, Valentin, Rote, Guenter, Schlipf, Lena, Talvitie, Topi
31st International Symposium on Computational Geometry (SoCG 2015)
We show how to preprocess a polygonal domain with a fixed starting point s in order to answer efficiently the following queries: Given a point q, how should one move from s in or
We show how to preprocess a polygonal domain with a fixed starting point s in order to answer efficiently the following queries: Given a point q, how should one move from s in or
Externí odkaz:
http://hdl.handle.net/10150/614771
http://arizona.openrepository.com/arizona/handle/10150/614771
http://arizona.openrepository.com/arizona/handle/10150/614771
Autor:
Knauer, Christian, Nötzel, Klaus Ralf
International Telemetering Conference Proceedings / October 22-25, 2001 / Riviera Hotel and Convention Center, Las Vegas, Nevada
Deutsche Telekom is operating various communication satellites since 1989. The SCC (spacecraft control center) is lo
Deutsche Telekom is operating various communication satellites since 1989. The SCC (spacecraft control center) is lo
Externí odkaz:
http://hdl.handle.net/10150/607691
http://arizona.openrepository.com/arizona/handle/10150/607691
http://arizona.openrepository.com/arizona/handle/10150/607691
Autor:
Alt, Helmut, Buchin, Kevin, Chaplick, Steven, Cheong, Otfried, Kindermann, Philipp, Knauer, Christian, Stehn, Fabian
Publikováno v:
J. Comput. Geom. 9(1): 312-327 (2018)
We consider the problem of packing a family of disks "on a shelf", that is, such that each disk touches the $x$-axis from above and such that no two disks overlap. We prove that the problem of minimizing the distance between the leftmost point and th
Externí odkaz:
http://arxiv.org/abs/1707.01239
Publikováno v:
J. Computational Geometry 10 (1): 207-222, 2019
Let $P$ be a set of $n$ points in the plane. We show how to find, for a given integer $k>0$, the smallest-area axis-parallel rectangle that covers $k$ points of $P$ in $O(nk^2 \log n+ n\log^2 n)$ time. We also consider the problem of, given a value $
Externí odkaz:
http://arxiv.org/abs/1612.02149
Publikováno v:
In Computers & Graphics February 2022 102:1-8
We consider the problem of augmenting an n-vertex graph embedded in a metric space, by inserting one additional edge in order to minimize the diameter of the resulting graph. We present exact algorithms for the cases when (i) the input graph is a pat
Externí odkaz:
http://arxiv.org/abs/1607.05547
$\renewcommand{\Re}{{\rm I\!\hspace{-0.025em} R}} \newcommand{\eps}{{\varepsilon}} \newcommand{\SetX}{\mathsf{X}} \newcommand{\VorX}[1]{\mathcal{V} \pth{#1}} \newcommand{\Polygon}{\mathsf{P}} \newcommand{\Space}{\overline{\mathsf{m}}} \newcommand{\pt
Externí odkaz:
http://arxiv.org/abs/1504.07685
We consider the following geometric optimization problem: find a maximum-area rectangle and a maximum-perimeter rectangle contained in a given convex polygon with $n$ vertices. We give exact algorithms that solve these problems in time $O(n^3)$. We a
Externí odkaz:
http://arxiv.org/abs/1405.1223
Autor:
Knauer, Christian.
Berlin, Freie University, Diss., 2002.
Dateiformat: zip, Dateien im PDF-Format.
Dateiformat: zip, Dateien im PDF-Format.